

STRUCTURAL SYSTEMS RESEARCH PROJECT

Report No. Earthquake and fire performance of SSRP-16/09 a mid-rise cold-formed steel framed building – supplemental materials: **CFS Test Program** Report #3 **Final Report** by Xiang Wang, Tara Hutchinson, Gilbert Hegemier, Srikar Gunisetty (UCSD) **Final Report** Department of Structural Engineering May 2018 University of California, San Diego La Jolla, California 92093-0085

University of California, San Diego Department of Structural Engineering Structural Systems Research Project Report No. SSRP-16/09

Earthquake and fire performance of a mid-rise cold-formed steel framed building – supplemental materials: *Final Report*

by

Xiang Wang, Tara Hutchinson, Gilbert Hegemier, Srikar Gunisetty (University of California, San Diego)

> Department of Structural Engineering University of California, San Diego La Jolla, California 92093-0085 May 2018

DISCLAIMER

The work that provided the basis for this publication was supported by funding under a Grant with the U.S. Department of Housing and Urban Development, Office of Policy Development and Research. The substance and findings of the work are dedicated to the public. The author and publisher are solely responsible for the accuracy of the statements and interpretations contained in this publication. Such interpretations do not necessarily reflect the views of the Government.

ACKNOWLEDGEMENTS

This project is a collaboration between two academic institutions (University of California, San Diego and Worcester Polytechnic Institute), two government or institutional granting agencies (Department of Housing and Urban Development and the California Seismic Safety Commission) and more than fifteen industry partners (a complete list of industry sponsors may be found in Appendix A). It is noted that although UCSD led the overall test program, this team's primary focus was on the earthquake testing phases, while WPIs primary focus was on the fire testing phases. For sake of harmony and flow in the present report, herein both testing phases are presented. We also thank the Jacobs School of Engineering and Department of Structural Engineering at UCSD for matching support of this effort. Industry sponsors include the California Expanded Metal Products Co. (CEMCO) and Sure-Board, who each provided financial, construction, and materials support. Specific individuals that dedicated significant time on behalf of this effort included Fernando Sesma (CEMCO), Kelly Holcomb, Carleton Elliot and Tyler Elliot (Sure-Board), Harry Jones (DCI Engineers), Diego Rivera (SWS Panels), Doug Antuma (Rivante), Larry Stevig (State Farm Insurance), Tim Reinhold and Warner Chang (Insurance Institute for Business and Home Safety), Steve Helland (DPR Construction), Rick Calhoun (Walters & Wolf), and Jesse Karnes (MiTek). We appreciate the efforts of these individuals and their colleagues at their respective firms.

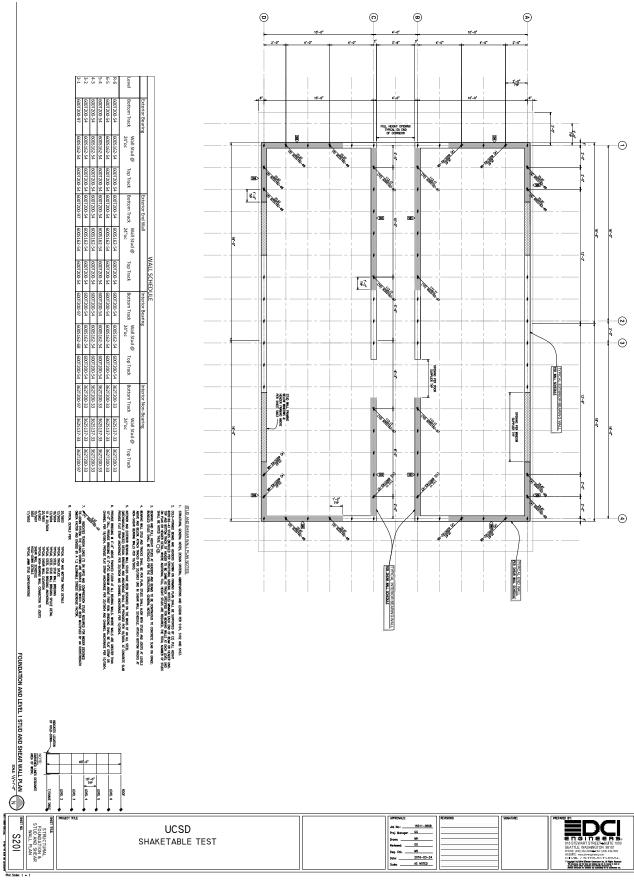
Regarding the test program, the technical support of NHERI@UCSD staff, namely, Robert Beckley, Jeremy Fitcher, Dan Radulescu, and Alex Sherman, are greatly appreciated. The authors are also grateful to Professor Yehuda Bock and graduate student Dara Goldberg from the Scripps Institute of Oceanography at UCSD for providing the Global Positioning System and related technical support, and Professor Falko Kuester and his students from the Department of Structural Engineering at UCSD for collecting aerial video footage and LiDAR image data of the test specimen. Experiments performed at the National Institute of Standards and Technology (NIST), led by Dr. Matthew Hoehler, supported the planning of this test program, and are greatly appreciated. Technical input to this report regarding the physical observations to appliances and other installed equipment were provided by Pat Boyer, Jack Jordan, and Larry Stevig of State Farm Insurance and Warner Chang of IBHS. These entities also kindly supplied appliances and provided support during the test program. In addition, the authors also greatly appreciate UCSD

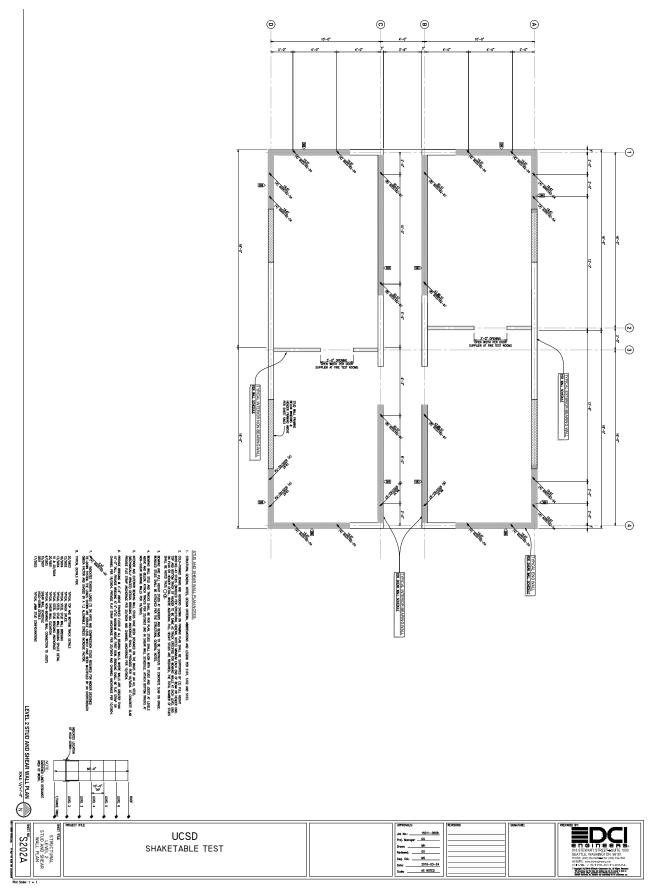
Department of Environment, Health & Safety, and the San Diego Fire Department for providing the necessary approvals and fire department participation during the fire-testing phase of this effort. The above continuous support is gratefully acknowledged. Findings, opinions, and conclusions are those of the authors and do not necessarily reflect those of the sponsoring organizations.

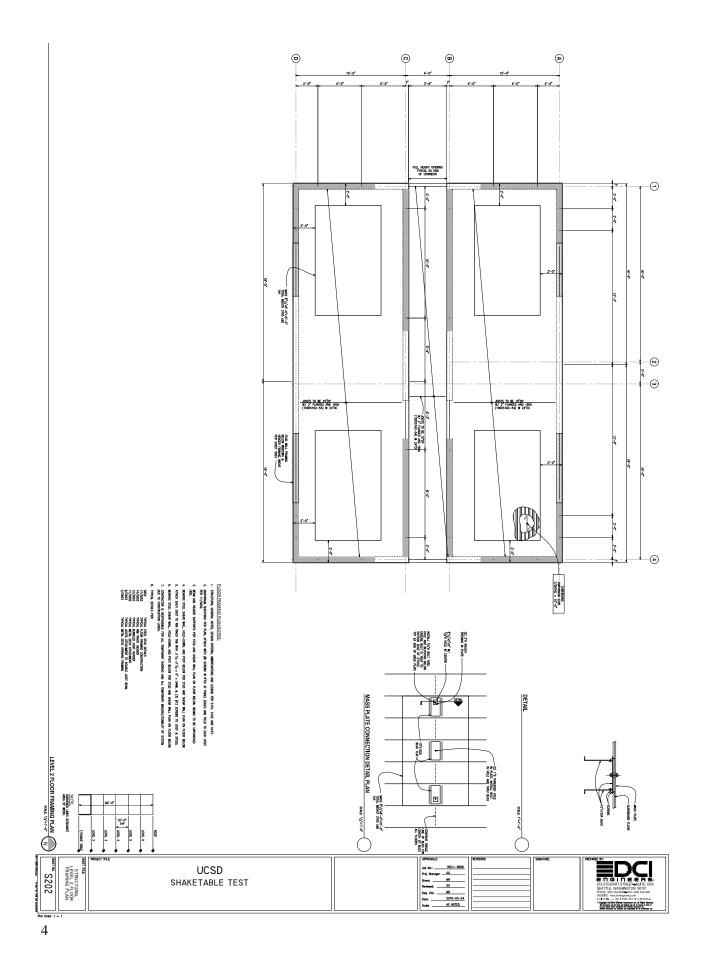
EXECUTIVE SUMMARY

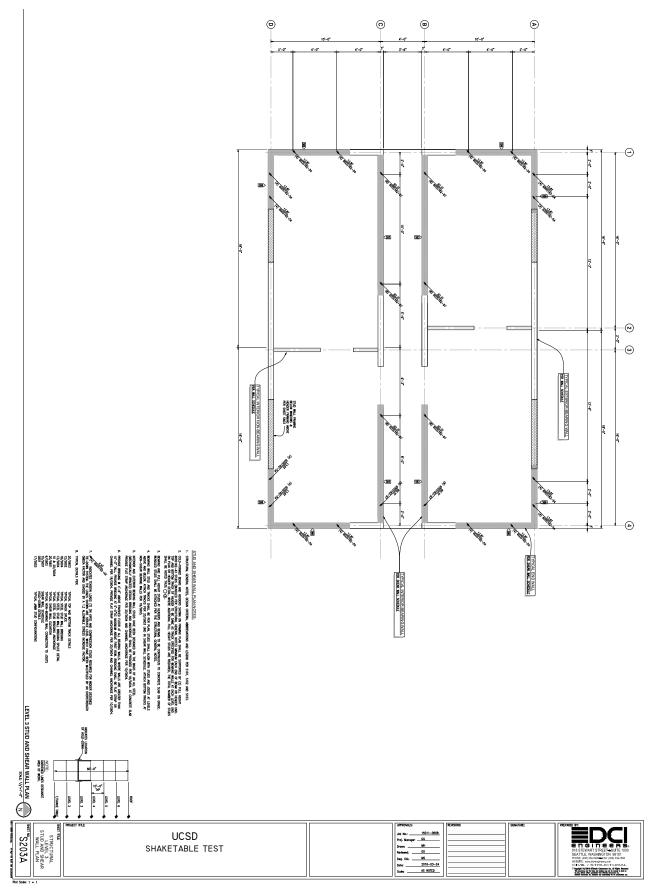
This report is the third (last) of a report series devoted to a unique multidisciplinary experimental project conducted at the Large High Performance Outdoor Shake Table (LHPOST) at the University of California, San Diego (UCSD). Led by UCSD, with partnerships from Worcester Polytechnic Institute, government and state agencies, and more than 15 industry sponsors, the centerpiece of this project involved full-scale earthquake and fire testing of a full-scale six-story CFS wall braced building. While the preceding reports of this series ^[1,2] provided detailed technical discussions of the test program and test results of this experimental program, this report synthesizes the supplemental supporting materials regarding the test building design and construction, cold-formed steel material properties, and the nonstructural systems installed within the test building.

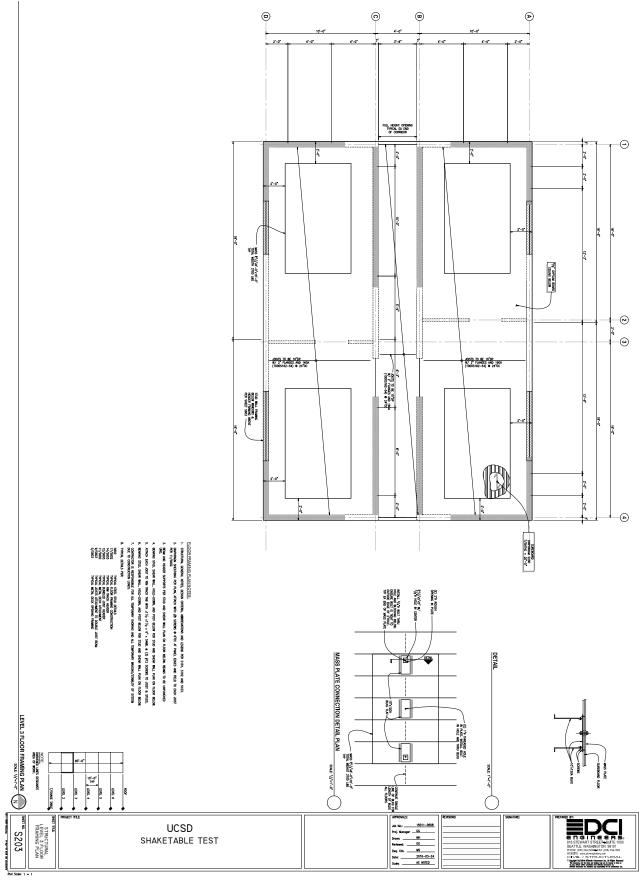
The supplemental materials documented in this report are developed in close consultation with the industry partners involved in the test program. Therefore, it is understandable that the formats of various documents and specifications vary – the authors have made no attempt to modify these details but rather simply archiving them within this report for future reference. The materials of the report are organized as follows: (1) design drawings and calculations, (2) cold-formed steel framing materials, (3) wall and floor sheathing materials, (4) drawings of prefabricated panels, (5) structural tie-down rod system, (6) door specifications and inspection sheets, and (7) appliances specifications.

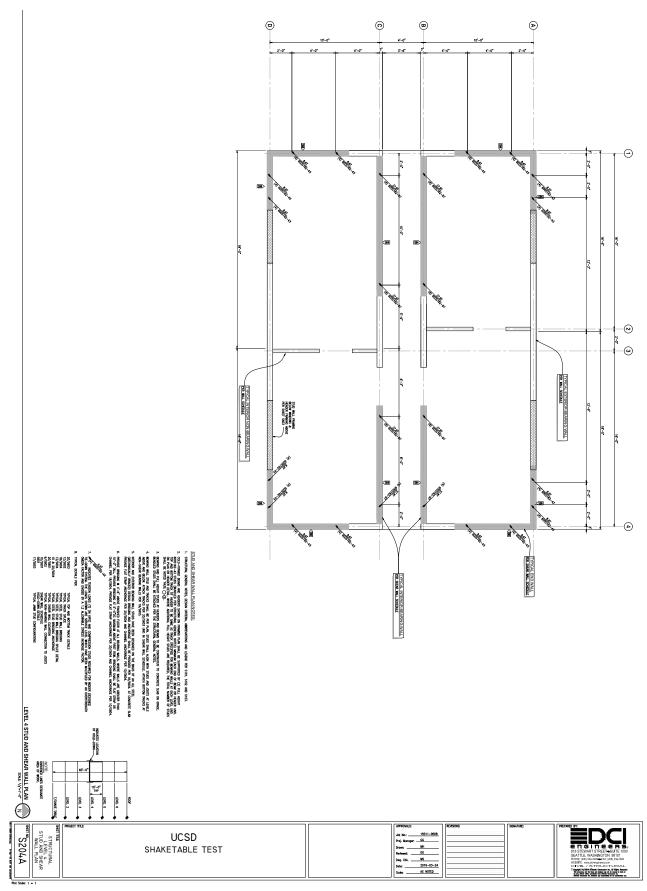

¹ Wang, X., Hutchinson, T.C., Hegemier, G., Gunisetty, S., Kamath, P, and Meacham, B. (2016). "Earthquake and fire performance of a mid-rise cold-formed steel framed building – test program and test results: *Rapid Resealse Report.*" *SSRP-2016/07*, Dept. of Structural Engineering, Univ. of California, San Diego, La Jolla, CA.

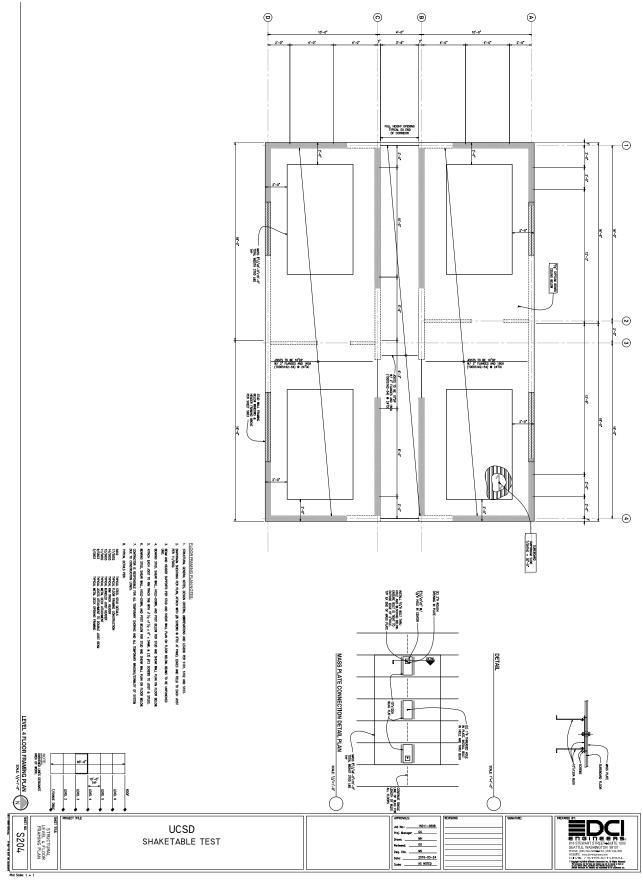

² Wang, X., Hutchinson, T.C., Hegemier, G., Gunisetty, S., Kamath, P, and Meacham, B. (2018). "Earthquake and fire performance of a mid-rise cold-formed steel framed building – test program and test results: *Final Report*." *SSRP-2016/08*, Dept. of Structural Engineering, Univ. of California, San Diego, La Jolla, CA.

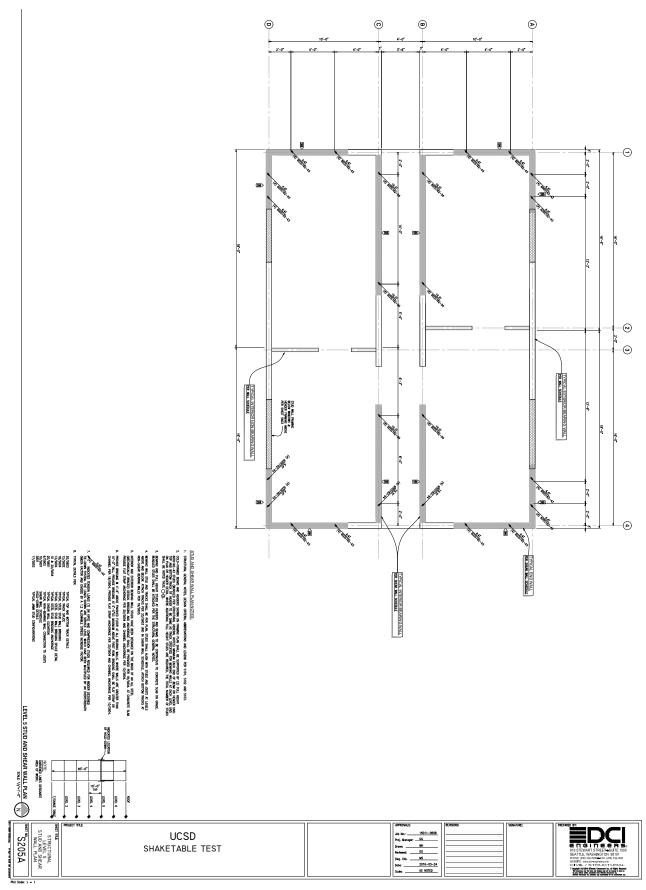

TABLE OF CONTENTS

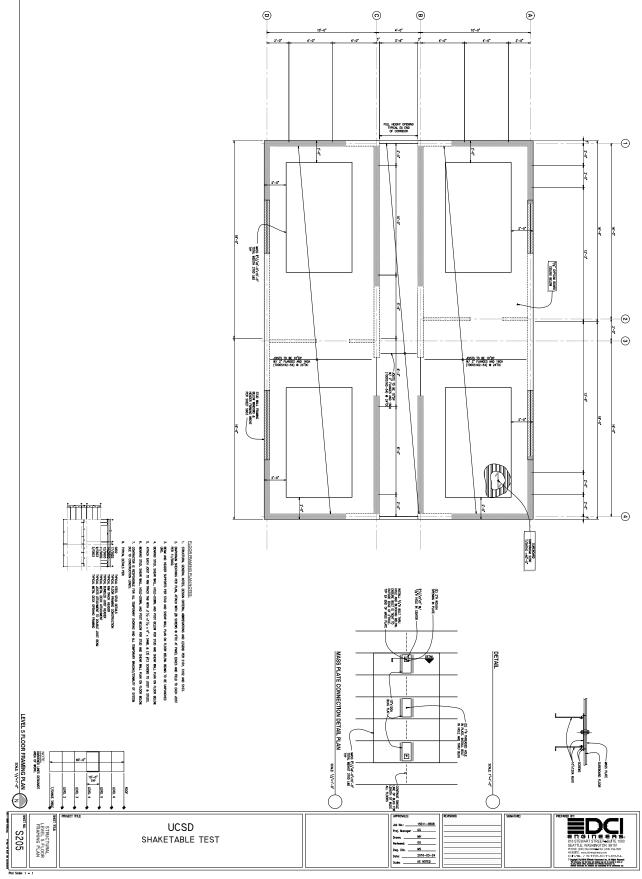

DI	SCLAIMER	i
AC	CKNOWLEDGEMENTS	ii
EX	ECUTIVE SUMMARY	iv
TA	BLE OF CONTENTS	v
1	DESIGN DRAWINGS AND CALCULATIONS	1
2	COLD-FORMED STEEL FRAMING SPECIFICATIONS	36
3	WALL AND FLOOR SHEATHING SPECIFICATIONS	58
4	DRAWINGS OF PREFABRICATED PANELS	75
5	STRUCTURAL TIE-DOWN ROD SYSTEM	. 196
6	DOOR SPECIFICATIONS AND INSPECTION SHEETS	. 209
7	APPLIANCES SPECIFICATIONS	. 228

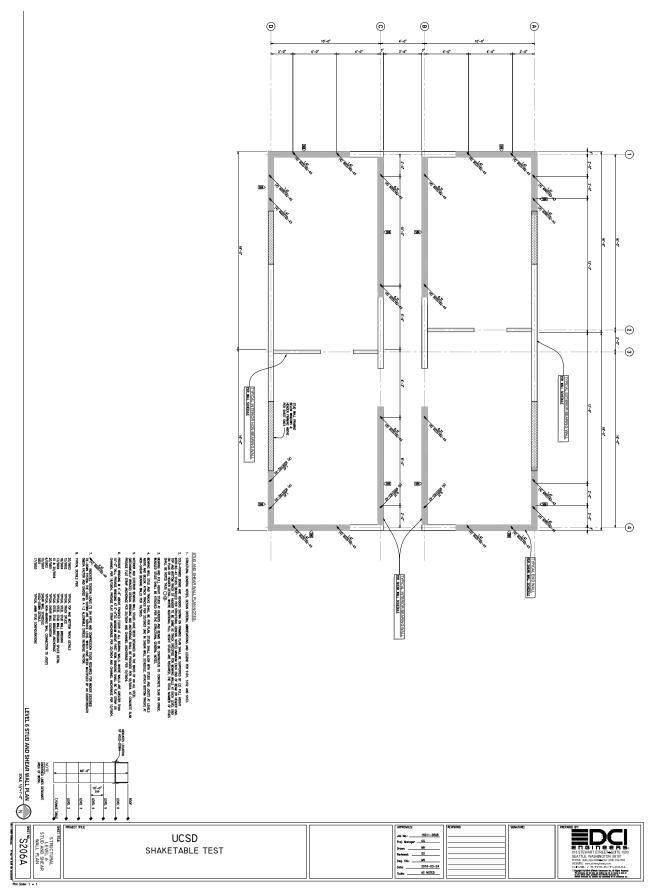

DESIGN DRAWINGS AND CALCULATIONS

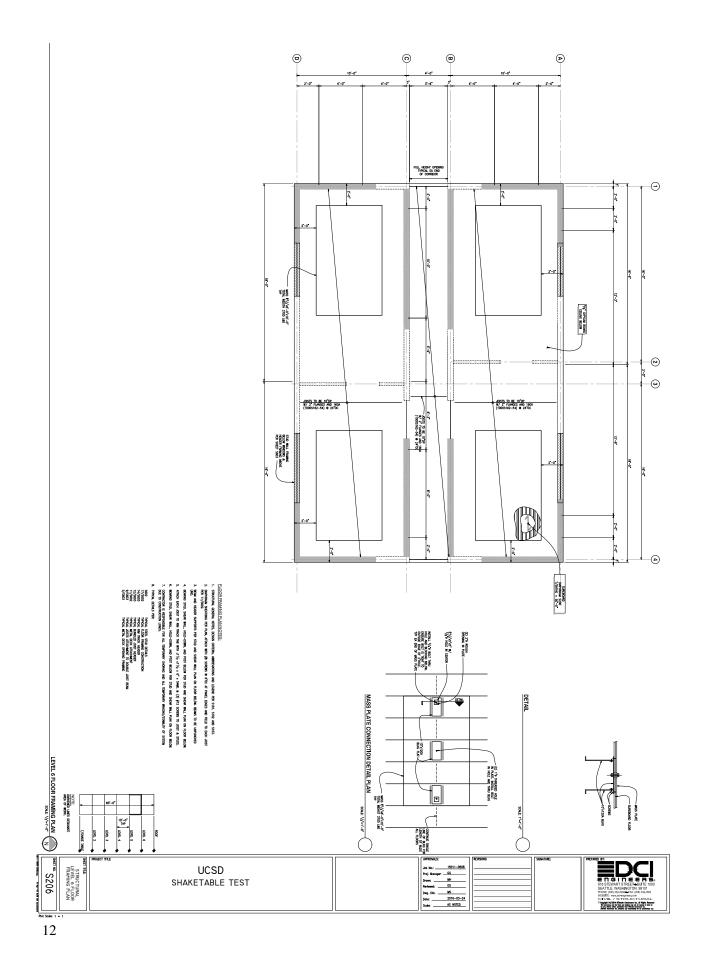


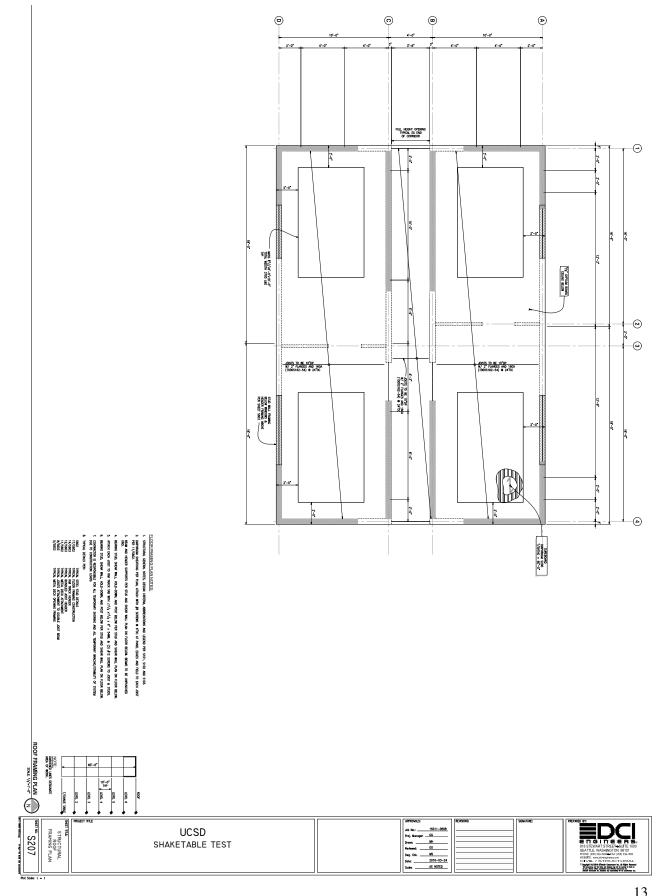


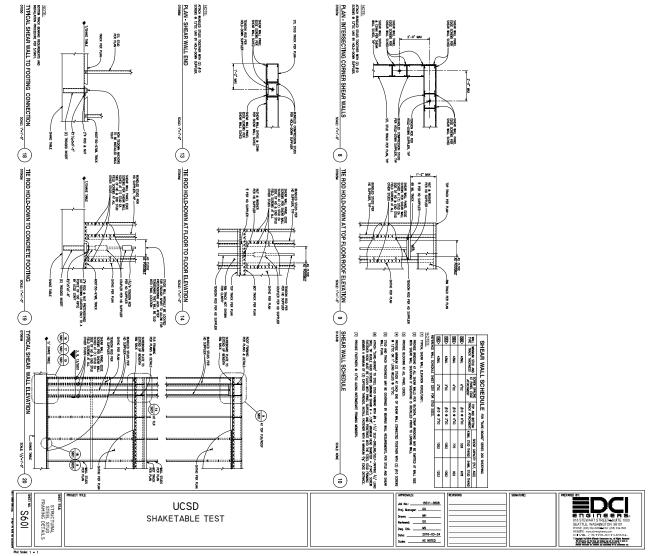


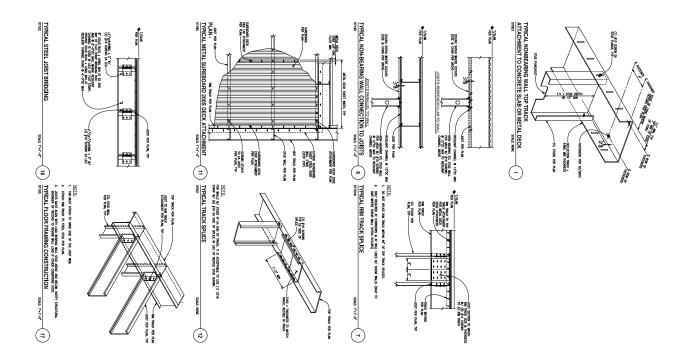


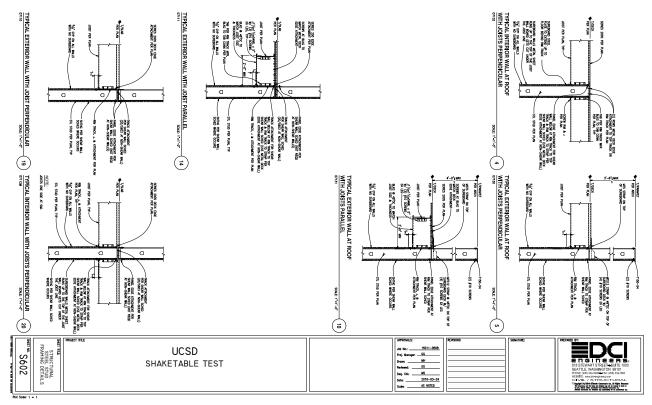


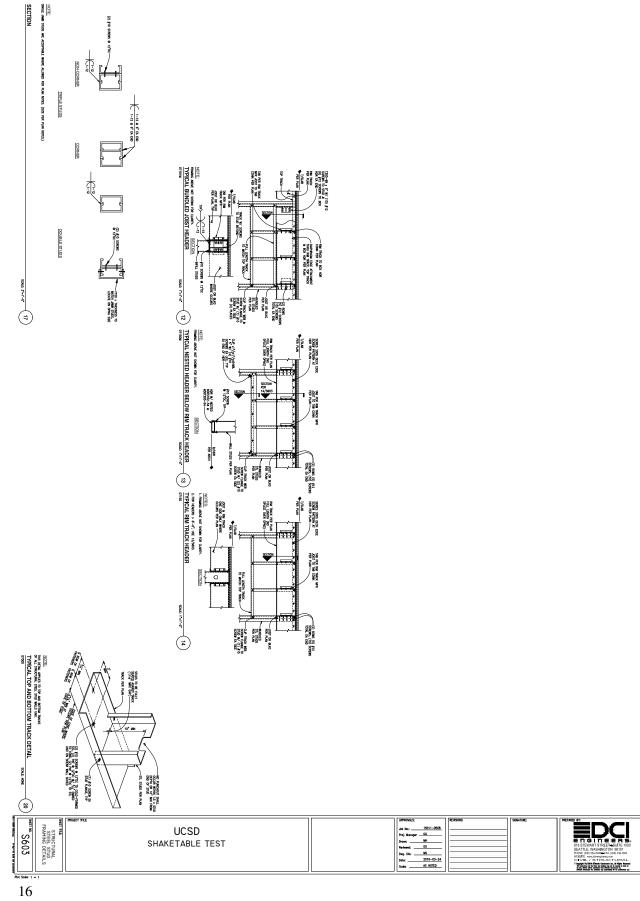


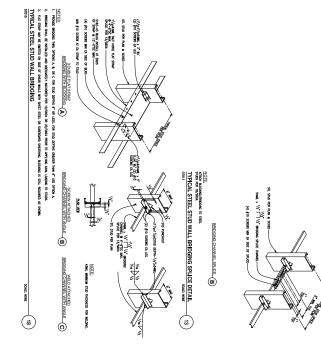


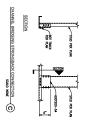


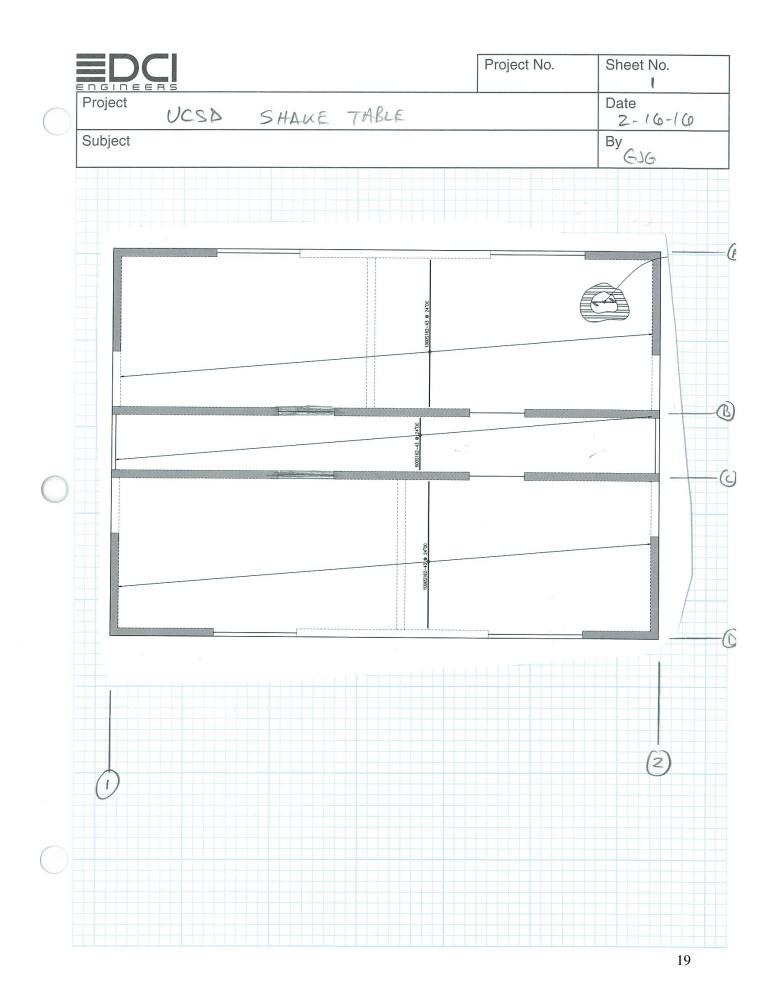











E Seattle Portland Spokane San Diego Austin Irvine San Francisco Anchorage Los Angeles

Structural Calculations

Cemco / UCSD Shaketable Test San Diego, California

DCI Job Number 15011-0508

February 17, 2016

roject VC	SIA		Date
ubject			Ву
STUD U	VALL DESIGN		
LINE	LEVEL LOAD E	SIZ	E
A + >	R-6		
AZD	6-5		
	5-4		
	4-3		
	3-2		
	2-1		
	2-6		
BEC	G-5		
1240	5-4		
	4-3		
	3 -2		
	2-1		
DESIGN	: ROOF = 32DL + 20LL	• • • • • • • • • • • • • • • • • • •	
	FLOOR = 320L + 40L	6	
	EXT = ZOPSE WIND INT = STPSE WNID HT = 9	,)	SEE
	4" STUD CINTERIOR		SPECI
	G'STUP C EXTERIOR		

Level	5'			Exterior	7'		Interior
R-6		720	720	600S162-33		1008	1008 600\$162-33
6-5		720	1440	600S162-43		1008	2016 600S162-33
5-4		720	2160	600S162-43		1008	3024 6005162-43
4-3		720	2880	600S162-54		1008	4032 600S162-54
3-2		720	3600	600S162-54		1008	5040 600S162-54
2-1		720	4320	600S162-54		1008	6048 600S162-68

Allowable (10' high; 20psf lateral @ exterior; 5 psf lateral at interior)

Exterior	Interior
0.86	2.1
1.94	3.11
4.2	5.33
6.06	7.17
	0.86 1.94 4.2

Combined Axial and Lateral Loads

						5 pst	Lateral	Load (I	nterior \	Nalls)							
Wall				600S137					600S162		600S200						
Wall Height (ft) 8 9 10 12	Spacing (in) oc.	33	ksi		50 ksi		33	ksi		50 ksi		33	ksi		50 ksi		
(11)		33	43	54	68	97	33	43	54	68	97	33	43	54	68	97	
	12	1.77	2.51	3.81	5.05	7.54	2.42	3.40	5.61	7.45	11.39	2.86	4.31	7.46	9.97	15.65	
8	16	1.73	2.47	3.78	5.02	7.52	2.37	3.35	5.57	7.41	11.35	2.81	4.26	7.41	9.93	15.60	
	24	1.65	2.39	3.72	4.96	7.46	2.28	3.27	5.49	7.33	11.28	2.72	4.16	7.31	9.83	15.51	
	12	1.74	2.47	3.78	5.02	7.52	2.38	3.36	5.57	7.41	11.35	2.80	4.23	7.31	9.79	15.39	
9	16	1.69	2.43	3.74	4.98	7.48	2.32	3.30	5.52	7.36	11.31	2.74	4.16	7.25	9.73	15.33	
	24	1.59	2.33	3.66	4.90	7.41	2.20	3.19	5.42	7.26	11.21	2.62	4.03	7.12	9.61	15.20	
	12	1.70	2.44	3.75	4.99	7.49	2.33	3.31	5.53	7.37	11.31	2.73	4.13	7.14	9.58	15.07	
10	16	1.63	2.37	3.70	4.94	7.44	2.25	3.24	5.46	7.30	11.25	2.65	4.05	7.05	9.50	14.99	
	24	1.51	2.25	3.59	4.83	7.36	2.10	3.11	5.33	7.17	11.12	2.50	3.88	6.89	9.35	14.83	
	12	1.60	2.34	3.66	4.90	7.41	2.17	3.15	5.35	7.25	11.19	2.55	3.88	6.67	9.00	14.21	
12	16	1.51	2.25	3.59	4.82	7.34	2.06	3.05	5.25	7.15	11.09	2.44	3.76	6.55	8.89	14.09	
	24	1.33	2.07	3.43	4.67	7.21	1.85	2.85	5.05	6.95	10.89	2.22	3.53	6.31	8.66	13.85	
	12	1.48	2.22	3.55	4.79	7.31	1.95	2.91	4.93	6.77	10.96	2.32	3.56	6.07	8.26	13.08	
14	16	1.36	2.09	3.44	4.67	7.20	1.81	2.78	4.80	6.63	10.80	2.17	3.40	5.91	8.10	12.91	
	24	1.11	1.85	3.21	4.45	7.00	1.54	2.51	4.53	6.35	10.49	1.89	3.09	5.59	7.79	12.58	
	12	1.34	2.07	3.40	4.63	7.15	1.71	2.62	4.41	6.10	9.89	2.05	3.18	5.38	7.38	11.74	
16	16	1.18	1.90	3.24	4.46	7.00	1.53	2.45	4.24	5.91	9.68	1.87	2.98	5.18	7.17	11.52	
	24	0.87 3	1.59	2.95	4.16	6.71	1.20 4	2.12	3.91	5.57	9.28	1.52	2.61	4.79	6.79	11.09	

						5 psf L	ateral Lo	oad (Inte	rior Wall	s)						
Wall			800	S137				800S162		800S200						
Height (ft)	Spacing (in) oc	33 ksi		50 ksi		33 ksi		50	ksi		33 ksi		50	ksi		
(III)		43	54	68	97	43	54	68	97	118	43	54	68	97	118	
	12	2.43	3.57	4.74	7.21	3.35	5.43	7.25	11.25	14.30	4.47	7.74	10.29	15.98	20.46	
8	16	2.40	3.55	4.72	7.19	3.32	5.40	7.22	11.23	14.28	4.44	7.71	10.25	15.95	20.43	
	24	2.35	3.50	4.68	7.16	3.26	5.35	7.16	11.17	14.23	4.36	7.64	10.19	15.88	20.37	
	12	2.40	3.55	4.73	7.20	3.33	5.41	7.22	11.23	14.28	4.44	7.71	10.26	15.95	20.43	
9	16	2.37	3.52	4.70	7.17	3.29	5.37	7.19	11.20	14.25	4.39	7.67	10.21	15.91	20.39	
	24	2.30	3.47	4.65	7.12	3.21	5.30	7.12	11.13	14.19	4.30	7.57	10.13	15.83	20.31	
	12	2.38	3.53	4.71	7.18	3.30	5.38	7.19	11.20	14.26	4.41	7.68	10.22	15.92	20.40	
10	16	2.34	3.49	4.67	7.15	3.25	5.33	7.15	11.16	14.22	4.35	7.62	10.17	15.87	20.35	
	24	2.26	3.43	4.61	7.09	3.15	5.24	7.06	11.07	14.14	4.23	7.50	10.06	15.76	20.25	
	12	2.32	3.48	4.66	7.13	3.22	5.31	7.13	11.14	14.20	4.32	7.59	10.14	15.84	20.32	
12	16	2.26	3.43	4.61	7.09	3.15	5.24	7.06	11.07	14.14	4.23	7.50	10.06	15.76	20.24	
	24	2.14	3.33	4.51	7.00	3.00	5.11	6.93	10.94	14.03	4.06	7.32	9.90	15.60	20.08	
	12	2.25	3.42	4.60	7.08	3.13	5.22	7.04	11.05	14.12	4.16	7.36	9.96	15.72	20.20	
14	16	2.16	3.35	4.53	7.01	3.03	5.13	6.94	10.95	14.03	4.04	7.24	9.84	15.61	20.09	
0.0	24	2.00	3.21	4.40	6.88	2.83	4.94	6.76	10.76	13.87	3.80	6.99	9.61	15.38	19.86	
	12	2.16	3.34	4.52	7.00	3.02	5.11	6.93	10.93	14.01	3.93	6.95	9.45	15.15	19.78	
16	16	2.05	3.25	4.43	6.91	2.89	4.98	6.80	10.80	13.89	3.77	6.78	9.30	15.00	19.62	
	24	1.83	3.06	4.25	6.74	2.62	4.72	6.54	10.53	13.66	3.46	6.46	9.00	14.68	19.29	

							15	psf Lat	teral Lo	ad							
Wall			350	S162			362	S137			362	S162		362S200			
Height	Spacing (in) oc	33	ksi	50 ksi		33 ksi		50	ksi	33	ksi	50	ksi	33 ksi		50	ksi
(ft)		33	43	54	68	33	43	54	68	33	43	54	68	33	43	54	68
	12	1.37	2.10	3.56	4.66	1.09	1.72	2.95	3.98	1.44	2.20	3.74	4.96	1.77	2.79	4.71	6.22
8	16	1.16	1.89	3.36	4.46	0.91	1.53	2.77	3.80	1.23	1.99	3.55	4.76	1.55	2.56	4.49	6.01
	24	0.78	1.49	2.99	4.08	0.56 4	1.16	2.43	3.44	0.85	1.59	3.17	4.38	1.13	2.13	4.06	5.58
	12	1.13	1.82	3.14	4.16	0.90	1.49	2.64	3.59	1.21	1.93	3.35	4.47	1.51	2.47	4.21	5.60
9	16	0.90	1.57	2.91	3.92	0.68	1.26	2.43	3.37	0.97	1.68	3.12	4.23	1.25	2.19	3.94	5.34
	24	0.46 ³	1.11 4	2.48	3.48	0.28 ³	0.83 4	2.03	2.94	0.53 ³	1.21	2.68	3.77	0.77 4	1.68	3.44	4.84
	12	0.90	1.53	2.71	3.63	0.70 4	1.25	2.31	3.16	0.97	1.64	2.94	3.94	1.25	2.13	3.69	4.95
10	16	0.64 ³	1.25	2.45	3.37	0.46 ³	0.99 4	2.07	2.91	0.71 4	1.36	2.67	3.66	0.95	1.82	3.38	4.65
	24	0.17 ³	0.74 ³	1.99 4	2.88	-	0.51 ³	1.62 ³	2.44 4	0.23 ³	0.84 ³	2.18 4	3.15	0.42 ³	1.25 4	2.83	4.09
	12	0.47 ³	0.98 ³	1.90 4	2.62	0.33 ³	0.78 ³	1.63 4	2.30	0.53 ³	1.08 4	2.10	2.88	0.74 ³	1.46	2.65	3.66
12	16	0.18 ²	0.67 ³	1.62 ³	2.33 4	-	0.48 ³	1.36 ³	2.02 4	0.24 ²	0.76 ³	1.81 ³	2.58 4	0.41 ³	1.11 ³	2.32 4	3.32
	24	-	0.13 ²	1.13 ²	1.81 ³	-	-	0.89 ²	1.51 ³	-	0.20 ²	1.29 ³	2.03 ³		0.49 ³	1.73 ³	2.72
	12	0.13 ²	0.53 ²	1.27 ³	1.83 ³	1.4	0.38 ²	1.08 ³	1.60 ³	0.18 ²	0.61 ³	1.42 ³	2.03 ³	0.32 ²	0.90 ³	1.82 ³	2.61
14	16	-	0.22 ²	1.00 ²	1.54 ³	· · ·	-	0.82 ²	1.31 ³	-	0.29 ²	1.14 ²	1.73 ³	-	0.54 ²	1.49 ³	2.28
	24	-	1-11	0.53 ¹	1.04 ²	-	-	0.35 ¹	0.82 ²		-	0.64 1	1.19 ²	-	÷	0.92 ²	1.69
	12	-	0.20 1	0.82 ²	1.26 ³	10.1-5	-11	0.68 ²	1.07 ²	- 17	0.26 ²	0.93 ²	1.41 ³		0.46 ²	1.223	1.85
16	16	- 14	- 10	0.57 1	0.98 ²	-	-	0.42 1	0.80 ²	- 68	-	0.66 1	1.12 ²		0.12 1	0.91 2	1.53
	24	-		0.13 ¹	0.51 1	1990 - 1990	-	-	0.34 1			0.191	0.62 1	-	-	0.38 1	0.97

If no note, deflection meets L/720

¹ Deflection meets L/120	² Deflection meets L/240	³ Deflection meets L/360	⁴ Deflection meets L/600
See Table Notes on page 31.			

22

SSMA

www.SSMA.com

Combined Axial and Lateral Loads

					a for the second		20	psf La	teral Lo	ad							- Andrews
Wall			350	S162			362	S137			362	S162		362S200			
Height (ft)	Spacing (in) oc	33	ksi	50	ksi												
(11)		33	43	54	68	33	43	54	68	33	43	54	68	33	43	54	68
	12	1.16	1.89	3.36	4.46	0.91	1.53	2.77	3.80	1.23	1.99	3.55	4.76	1.55	2.56	4.49	6.01
8	16	0.90	1.62	3.11	4.21	0.67	1.28	2.54	3.56	0.98	1.72	3.30	4.50	1.27	2.27	4.20	5.72
	24	0.43 ³	1.11 4	2.64	3.72	0.24 ³	0.81 4	2.11	3.10	0.50 4	1.21	2.82	4.01	0.74 4	1.71	3.65	5.18
	12	0.90	1.57	2.91	3.92	0.68	1.26	2.43	3.37	0.97	1.68	3.12	4.23	1.25	2.19	3.94	5.34
9	16	0.60 ³	1.26	2.62	3.62	0.41 ³	0.97 4	2.16	3.08	0.67 4	1.36	2.82	3.92	0.92	1.85	3.60	5.00
	24	-	0.69 ³	2.08 4	3.06	-	0.44 ³	1.66 ³	2.55 4	0.13 ³	0.78 ³	2.27 4	3.34	0.32 ³	1.21 4	2.97	4.37
	12	0.64 ³	1.25	2.45	3.37	0.46 ³	0.99 4	2.07	2.91	0.71 4	1.36	2.67	3.66	0.95	1.82	3.38	4.65
10	16	0.32 ³	0.91 ³	2.14 4	3.03	0.16 ³	0.66 ³	1.77 4	2.59	0.38 ³	1.01 ³	2.34	3.32	0.59 ³	1.43 4	3.00	4.27
	24		0.29 ³	1.56 ³	2.43 ³		-	1.22 ³	2.01 ³	-	0.38 ³	1.74 ³	2.69 4	-	0.74 ³	2.32 3	3.58 4
	12	0.18 ²	0.67 ³	1.62 ³	2.33 4	1.1.	0.48 ³	1.36 ³	2.02 4	0.24 2	0.76 ³	1.81 ³	2.58 4	0.41 ³	1.11 ³	2.32 4	3.32
12	16		0.30 ²	1.29 ³	1.97 ³	-	0.13 ²	1.04 3	1.67 ³	-	0.38 ²	1.45 ³	2.20 ³	101/-	0.69 ³	1.92 3	2.91 4
	24	-	-	0.70 ²	1.35 ²	-	-	0.48 ²	1.06 ²	-		0.84 2	1.55 ²	-		1.21 2	2.19 ³
	12		0.22 ²	1.00 ²	1.54 ³		-	0.82 ²	1.31 ³	-	0.29 ²	1.14 ²	1.73 ³	-	0.54 ²	1.49 ³	2.28 ³
14	16	-	×	0.68 ²	1.20 ²	-	-	0.50 ¹	0.97 ²	-	-	0.79 ²	1.36 ²	1.12	0.12 ²	1.10 ²	1.88 ³
	24	-	-	0.13 ¹	0.60 ¹		-		0.39 1	-		0.21 1	0.73 ¹			0.43 1	1.18 ²
	12	-	- 1	0.57 1	0.98 ²	- 21	-	0.421	0.80 ²	-	-	0.66 1	1.12 ²	-	0.12 1	0.91 2	1.53 ²
16	16	-	•	0.26 1	0.66 1		-	0.13 1	0.49 ¹	-	-	0.34 1	0.77 ¹	-	-	0.54 1	1.15 ²
	24	-	- 18 S		0.11 1	-	100 P	-	-	-		-	0.19 ¹		-	-	0.50 1

						Sales Press	20	psf La	teral Lo	ad			19. 19 M				1 Secold
Wall			400	S137			400	S162			400	S200			550	S162	
Height (ft)	Spacing (in) oc	33	ksi	50	ksi	33	ksi	50	ksi	33	ksi	50	ksi	33	ksi	50	ksi
(11)		33	43	54	68	33	43	54	68	33	43	54	68	33	43	54	68
8	12 16 24	1.06 0.83 0.40 ⁴	1.74 1.50 1.04	3.14 2.92 2.50	4.41 4.18 3.72	1.42 1.17 0.70	2.25 1.99 1.50	4.04 3.79 3.32	5.57 5.31 4.81	1.76 1.48 0.97	2.88 2.60	5.10 4.82	6.97 6.69	1.93 1.74	2.95 2.77	5.22 5.05	7.06 6.89
9 ·	12 16	0.84 0.57 ⁴	1.49 1.20	2.83 2.56	4.07 3.77	1.17 0.87	1.95 1.64	3.64 3.34	5.08 4.76	1.47 1.15	2.06 2.53 2.19	4.28 4.59 4.25	6.14 6.36 6.01	1.35 1.75 1.50	2.41 2.77 2.54	4.70 5.03 4.80	6.55 6.90 6.67
10	24 12 16 24	0.62 ⁴ 0.31 ³	0.67 ³ 1.22 0.89 ⁴ 0.30 ³	2.06 2.49 2.18 1.61 ³	3.21 3.62 3.28 2.65 ⁴	0.33 ³ 0.90 0.57 ³	1.07 ⁴ 1.64 1.29 0.64 ³	2.78 3.21 2.87 2.24 ⁴	4.16 4.54 4.17 3.48	0.55 ⁴ 1.18 0.81 ⁴ 0.15 ³	1.56 2.17 1.78 1.07 ³	3.61 4.05 3.66 2.94	5.35 5.69 5.29 4.54	1.03 1.54 1.24 0.69	2.09 2.56 2.28 1.74	4.36 4.76 4.48 3.94	6.23 6.69 6.40
12	12 16 24	0.19 ³	0.70 ³ 0.32 ³	1.78 ⁴ 1.42 ³ 0.79 ²	2.67 2.27 ³ 1.58 ³	0.41 ³	1.03 ³ 0.62 ³	2.33 ⁴ 1.94 ³ 1.25 ²	3.38 2.96 ⁴ 2.20 ³	0.61 ³ 0.20 ³	1.44 ⁴ 0.99 ³ 0.20 ²	2.96 2.52 ⁴ 1.73 ³	4.31 3.84 3.00 ³	1.08 0.70 ⁴	2.07 1.69 0.99 ⁴	4.10 3.72 3.01	5.85 5.91 5.51 4.76
14	12 16 24	Ē	0.25 ²	1.15 ³ 0.79 ² 0.16 ¹	1.82 ³ 1.42 ² 0.73 ¹	:	0.50 ³	1.56 ³ 1.16 ² 0.48 ¹	2.35 ³ 1.92 ³ 1.18 ²	0.14 ²	0.81 ³ 0.35 ²	2.01 ³ 1.57 ³ 0.79 ²	3.05 ⁴ 2.58 ³ 1.76 ²	0.61 ³ 0.17 ³	1.53 1.08 ³ 0.26 ³	3.34 2.88 ⁴ 2.05 ³	4.97 4.48 3.59 ³
16	12 16 24	-	-	0.67 ² 0.32 ¹	1.17 ² 0.80 ² 0.15 ¹	-	- -	0.98 ² 0.60 ¹	1.58 ³ 1.17 ² 0.48 ¹		0.32 ² -	1.30 ² 0.87 ² 0.14 ¹	2.10 ³ 1.65 ² 0.89 ¹	0.18 ³ - -	1.00 ³ 0.51 ³	2.57 ⁴ 2.07 ³ 1.19 ²	3.97 3.43 ³ 2.48 ³

							20 ps	f Latera	I Load								
Wall				600S137					600S162		600S200						
Height	Spacing (in) oc	33	ksi		50 ksi		33	33 ksi		50 ksi		33 ksi		50 ksi			
(ft)		33	43	54	68	97	33	43	54	68	97	33	43	54	68	97	
	12	1.42	2.17	3.53	4.77	7.30	2.00	3.02	5.25	7.10	11.06	2.43	3.86	7.01	9.55	15.23	
8	16	1.27	2.02	3.40	4.65	7.20	1.82	2.85	5.10	6.95	10.91	2.25	3.66	6.81	9.36	15.04	
	24	0.97	1.73	3.15	4.40	6.99	1.47	2.53	4.79	6.65	10.61	1.88	3.27	6.42	9.00	14.67	
	12	1.29	2.04	3.41	4.66	7.21	1.85	2.87	5.11	6.96	10.91	2.26	3.65	6.73	9.25	14.84	
9	16	1.10	1.85	3.25	4.50	7.07	1.62	2.66	4.91	6.76	10.72	2.02	3.40	6.48	9.01	14.60	
	24	0.73	1.48	2.93	4.18	6.80	1.18	2.25	4.51	6.38	10.34	1.56	2.91	5.98	8.54	14.12	
	12	1.15	1.90	3.28	4.53	7.09	1.67	2.71	4.94	6.79	10.74	2.06	3.41	6.41	8.89	14.37	
10	16	0.92	1.67	3.08	4.33	6.92	1.40	2.45	4.69	6.55	10.50	1.77	3.11	6.10	8.59	14.06	
	24	0.47	1.22	2.69	3.94	6.58	0.86	1.94	4.20	6.06	10.01	1.22	2.51	5.49	8.01	13.47	
	12	0.82	1.56	2.97	4.21	6.80	1.25	2.28	4.48	6.37	10.29	1.60	2.86	5.63	8.00	13.16	
12	16	0.50	1.24	2.68	3.92	6.54	0.88	1.92	4.11	6.00	9.91	1.22	2.44	5.19	7.58	12.72	
	24	-	0.63 4	2.13	3.36	6.03	0.19 ³	1.24	3.43	5.30	9.18	0.50 4	1.66	4.37	6.77	11.86	
	12	0.46 4	1.17	2.59	3.81	6.42	0.79	1.78	3.79	5.58	9.63	1.11	2.24	4.71	6.92	11.64	
14	16	1	0.76 4	2.21	3.42	6.05	0.35 ³	1.33 4	3.33	5.10	9.09	0.64 4	1.73	4.18	6.38	11.06	
	24	-	0.01 ³	1.50 ³	2.68 4	5.35		0.52 ³	2.49 ³	4.21	8.09		0.79 ³	3.19 4	5.39	9.97	
	12		0.76 ³	2.15 4	3.33	5.92	0.35 ³	1.26 4	3.03	4.64	8.21	0.62 ³	1.62	3.76	5.75	9.94	
16	16		0.28 ³	1.69 ³	2.84 4	5.44	-	0.75 ³	2.52 ³	4.08	7.58	0.10 ³	1.04 ³	3.16 4	5.13	9.25	
	24	6 C.	-	0.85 ²	1.95 ³	4.56 ³	-		1.60 ³	3.09 ³	6.44 4	-		2.093	4.03 ³	8.00	

If no note, deflection meets L/720

20	² Deflection meets L/240	³ Deflection meets L/360

34

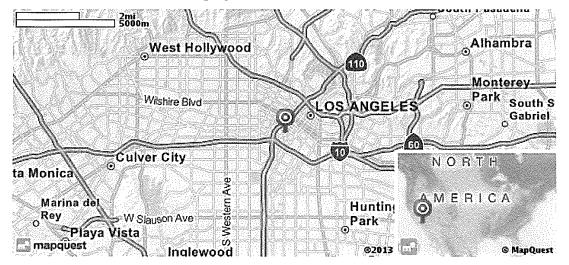
SSMA

⁴Deflection meets L/600

Copyright © 2015 by the SSMA

SUSGS Design Maps Summary Report

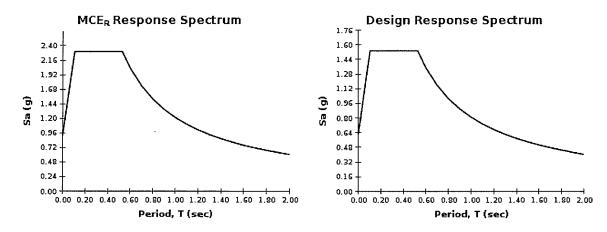
User-Specified Input


Report Title 1000 Grand

5

Thu August 29, 2013 20:19:01 UTC Building Code Reference Document ASCE 7-10 Standard (which utilizes USGS hazard data available in 2008) Site Coordinates 34.04227°N, 118.26407°W

Site Soil Classification Site Class D - "Stiff Soil"


Risk Category I/II/III

USGS-Provided Output

s _s =	2.301 g	S_{MS} = 2.301 g	S_{ps} = 1.534 g
S _1 =	0.809 g	S_{м1} = 1.213 g	S_{D1} = 0.809 g

For information on how the SS and S1 values above have been calculated from probabilistic (risk-targeted) and deterministic ground motions in the direction of maximum horizontal response, please return to the application and select the "2009 NEHRP" building code reference document.

For PGA_M, T_L , C_{RS} , and C_{R1} values, please <u>view the detailed report</u>.

Although this information is a product of the U.S. Geological Survey, we provide no warranty, expressed or implied, as to the accuracy of

Project No. Sheet No. 10 Project UCSD Date 2/16 Subject By GNG WE OF TYPICAL FLOOP Sousie AFLOR = (248+) (348+) = 816 SF Ss = 2,301 505 = 1.534 51 = 0.809 501 = 0.809 W/6 = (32psf) (816st) = 26,1K R = 6.5 $T_e = 1.0$ PERIOD OF BULDING ROOFLOUGL H= 608+ WAUWE = 10 (10psf) 2(46,5) + 2 (62) + 2 (358) 1q= Cehn C= 0.02 $T_{q} = 0.02(60P)^{0.75}$ Way = 14,650 WRF = 14.65 + 26.1K = 40.75K CSWRF = 9.62K Tq= 0,4/3552 TYPICAL FLOOR T2 = 8,0800 Por Fig 22-12 WAU WE = 2 (14,65K) = 79.3K TaLTL WE = 2913 K+261K = 55.4K $C_{S} = \frac{5}{5} \frac{1}{6} = \frac{1.53}{6} = \frac{0.236}{6} = \frac{0.236$ Co Wpc = 13,1612 W = 4/0,75 K+ 5 (55,246 K) = 317,75K $\frac{C_{\text{Sureg}}}{T\left(\frac{R}{F_{e}}\right)} = \frac{0.809}{0.43(\frac{6.5}{10})} = 0.29$ VRASE = 0.236 (317.75) = 75 K Source 2 0,044 Sig Ze 20,044 (1.534) (1.0 Como = 0,067 VB158=0,23EW

		Project No.	Sheet No.
Project			Date
Subject			Ву
CONGITUDINAL LOADING	TRAW	rsvorso con	FDING-
$\frac{R_{00}F}{2(10psf)(2(38')+2(38')+2(38'))}$ $W_{00re} = 11, 1/16$ $W_{RP} = 11, 1/2 + 26, 1/6 = 37, 5/6$ $C_{5}W_{PP} = 8, 95/6$	WRF =	Way = 10,85 10,85 ¹⁶ + 26	11 = 36.95 K
$\frac{TYP FLOOR}{W_{wKU} = 2(1/.4)^{K}} = 22.8^{K}$	TYP FL	$C_{\rm SW_{RF}} = 8,7$ 20R $= 2(10.85^{\rm K})$	
$W_{FL} = .22.8^{k} + 26.1^{k} = 48.9^{k}$ $C_{SW_{FL}} = 11.5^{k} / 12$		$21.7^{k} + 26$ $W_{FL} = 11.28$	
VBASE = 8,85 K+ 5 (11.54 K) = 66,551K	VBAST	= 65,12 ^{IL}	

-

C_s = 0.236

V_{base} = 74.99 kip

Level	w _x	h _x	w _x h _x	w _x h _x /Σw _{xi} h _{xi}	F _x
Roof	9.62	60	577.2	0.23	17.1
L6	13.1	50	655	0.26	19.4
L5	13.1	40	524	0.21	15.5
L4	13.1	30	393	0.15	11.6
L3	13.1	20	262	0.10	7.7
L2	13.1	10	131	0.05	3.9
	75.12		2542.2	1.00	75.1

1

Longitudinal Seismic Loading

Level	w _x	h _x	w _x h _x	w _x h _x /Σw _{xi} h _{xi}	F _x
Roof	8.85	60	531	0.21	15.7
L6	11.54	50	577	0.23	17.0
L5	11.54	40	461.6	0.18	13.6
L4	11.54	30	346.2	0.14	10.2
L3	11.54	20	230.8	0.09	6.8
L2	11.54	10	115.4	0.05	3.4
	66.55		2262	0.89	66.8

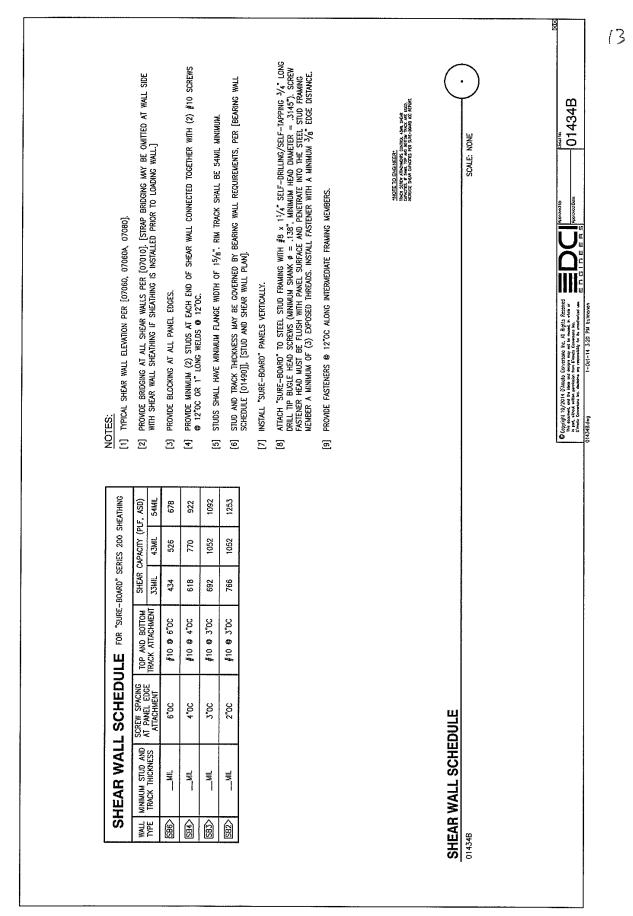
Transverse Seismic loading

Level	w _x	h _x	w _x h _x	w _x h _x /Σw _{xi} h _{xi}	F _x
Roof	8.72	60	523.2	0.21	15.5
L6	11.28	50	564	0.22	16.7
L5	11.28	40	451.2	0.18	13.3
L4	11.28	30	338.4	0.13	10.0
L3	11.28	20	225.6	0.09	6.7
L2	11.28	10	112.8	0.04	3.3
	65.12		2215.2	0.87	65.5

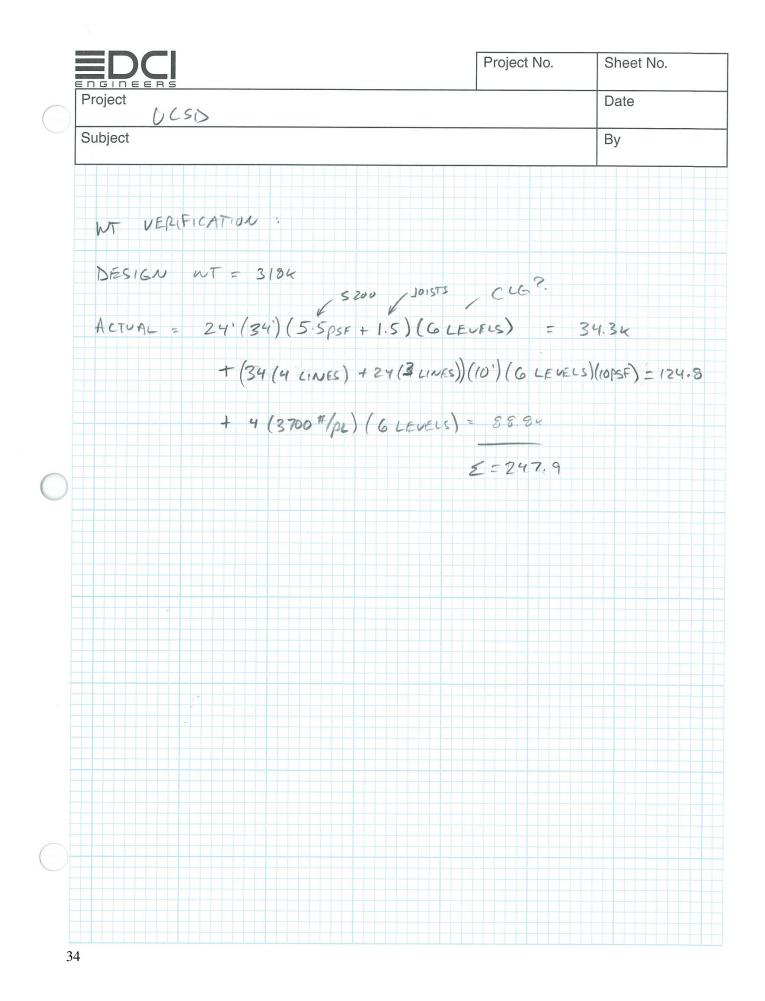
W_{DL}= 275.95 kip

					Project No.	Sheet No.
\bigcirc	Project	CSD				Date 2-16-16
\bigcirc	Subject					By
	> V= 5		$= 2.1 \kappa$		J = 526plf)	
		1'(.8)			1000.10 44.5	
				TOO CON	JSERVATIVE	
	DESIGN	FOR 5%				
0	V 15-14 V 15-14 V 14-13	05 (17) 05 (1 05 (10))/8' = 101 3.6)/8' = 9 2)/8' = 64	98pus => FHD= GPUS => FHD= SPUS => FHD= PLF => FHD= (106 []] = 1.3 85 []] = 1.1	3 EFHD= 7:5 EFHD= 3.6
	VIDEL	= .05(3.4)/2= 21	13plf => Fito= plf => Fito=	43[]=0.9	
			- 118 - 21	1-1 -1112-	21 [] = 0.5	$\Sigma F_{HD} = 5.2 K$
				ARE STREA		
	LEVEL ,	NEED TO	BE AN ZFHD	EFHDX.7× 21	Q = 3 2.5	Samplu E Assite
	R-6	1.2	1.2	2.1		NE SSHE
	6-5	1.3	2.5	4.5		Samper
	5-4	1-1	3.6	6.3		14,9
\bigcirc	4-3	0.8	4.4	7.7		4 V
	3-2	0.5	4.9	8.7		
	2.1	0.3	5-2	9.1		

EDC				Projec	t No.	Sheet No.
Project	CSD			I		Date 2-16-16
Subject						By
						G76
LINES	Bac					
DESIGN	J FOR 50	10 FA				<u> </u>
				· N	<u>_</u>	(FTD-S=V
	, 5 (15-7)/30' :			L.	1	(3-3)
FLG-45 3	. 5 (17)/30	- 283 ->	FHD-22 =	283 (10	7= 3.1	(3.5)
V15-14=	. 5 (13.6)/30	= 227 =)	FHD - 22 =	227[]]=2.5	(2.8)
V_4-L3	= ,5(10.2)/3	o) = 170 =	F#D-22	170]-1.9	(2.1)
JL3-LZ	5(6.8)/3	0=113 =) FHD-22	= 113 C]=1.3	(1.4)
VLZ-LI	= . 5 (3.4)/30	= 57 :	⇒ F#D-22	= 57	7 - 0.6	, (0.7)
	22'			9'		
LEVEL	FHD	ZFHD	2FHAX,7X2		EFAD	ZFHOX,7×2/1.
R-6	2.9	Z.9	5.1	3.3	3.3	5.7
6-5	3.1	6.0	10.6	3.5	6.8	11.9
5-4	2-5	8.5	15.0	2-8	9.6	16.9
4-3	1.9	10.4	18.3	2.1	11.7	20.6
3-2	1.3	11.7	20.5	1.4	13.1	23.1
2-1	0.6	12.3	21.6	0.7	13.8	24.3
* Don	I J'T REDU	CE BY	DL (.6	D	ample	e spreadsheel


C	
1	J
	B

30


-sum	6.26	19.30	37.76	60.29	85.53	112.13	
T*Omega/1.2 T	6.26	13.04 19.3	18.46	22.53	25.24	26.60	
-sum	0.229	0.477	0.675	0.824	0.923	0.973	
v (kif) v	0.23	0.25	0.20	0.15	0.10	0.05	
7E	5.50	5.95	4.76	3.57	2.38	1.19	
tory V=	15.70	17.00	13.60	10.20	6.80	3.40	
E-S	10.00	10.00	10.00	10.00	10.00	10.00	
L- Hd dist Ht	8.00	0.50 8.00	8.00	8.00	8.00	8.00	
-Panel	10.50	10.50	10.50	10.50	10.50	10.50	
Length L	24.00	24.00	24.00	24.00	24.00	24.00	
Level	R-6	6-5	5-4	4-3	3-2	2-1	

	lane1-1
	l anoth
Q+V)	ומעם

um	1.43	4.41	8.63	13.78	19.55	25.63
T*Omega/1.2 T-9	1.43	2.98	4.22	5.15	5.77 19.	6.08
mns-v	0.05	0.11	0.16	0.20	0.22	0.23
v (klf) v-	0.05	0.06	0.05	0.04	0.02	0.01
7E	0.55	0.60	0.48	0.36	0.24	0.12
ory V=.	15.70	17.00	13.60	10.20	6.80	3.40
E-St	10.00	10.00	10.00	10.00	10.00	10.00
- Hd dist Ht	4.00	4.00	4.00	4.00	0 5.00 4.00	4.00
Panel L	5.00	5.00	5.00	5.00	5.00	5.00
Length L-	10.00	10.00	10.00	10.00	10.00	10.00
Level	R-6	6-5	5-4	4-3	3-2	2-1

Project No. Sheet No. 14 Date Project USSD Subject By HOLDOWN ANCHOR CHERCK-LIMIT ELONGATION TO -18"/FLOOR EX: LINES BAC: = 112.1 K = 112.1 K = $\frac{112.1 \times 10^{-1}}{10} = \frac{1000}{100} =$ T151 = 112.1K LINES CAD: T, ST = ZS.6K => 7/8"A325 = ["/_1 = Z7.1K; A= 0.6 m2 $\Delta = \frac{25.6(10)(12)}{0.6(29.000)} = 0.18" \rightarrow 0K$ USE 13/4 \$ FOR FIRST COUPLER

COLD-FORMED STEEL FRAMING SPECIFICATIONS

ICC-ES Evaluation Report

Most Widely Accepted and Trusted

ESR-3016

Reissued July 2016 This report is subject to renewal July 2018.

www.icc-es.org | (800) 423-6587 | (562) 699-0543

DIVISION: 05 00 00—METALS Section: 05 40 00—Cold-Formed Metal Framing Section: 05 41 00—Structural Metal Stud Framing Section: 05 42 00—Cold-Formed Metal Joist Framing

DIVISION: 09 00 00—FINISHES Section 09 22 13—Metal Furring Section: 09 22 16.13—Non-Structural Metal Stud Framing

REPORT HOLDER:

CALIFORNIA EXPANDED METAL PRODUCTS COMPANY (CEMCO) 263 NORTH COVINA LANE CITY OF INDUSTRY, CALIFORNIA 91746 (800) 416-2278 www.cemcosteel.com

ADDITIONAL LISTEE:

WARE INDUSTRIES, INC., d/b/a MARINO\WARE 400 METUCHEN ROAD SOUTH PLAINFIELD, NEW JERSEY 07080 (908) 757-9000 www.marinoware.com

TELLING INDUSTRIES, LLC 6272 CENTER STREET MENTOR, OHIO 44060 (440) 974-3370 www.tellingindustries.com

EVALUATION SUBJECT:

COLD-FORMED STEEL FRAMING

1.0 EVALUATION SCOPE

Compliance with the following codes:

- 2015, 2012 and 2009 International Building Code[®] (IBC)
- 2015, 2012 and 2009 International Residential Code[®] (IRC)
- 2013 Abu Dhabi International Building Code (ADIBC)[†]

 $^{\dagger} \text{The ADIBC}$ is based on the 2009 IBC. 2009 IBC code sections referenced in this report are the same sections in the ADIBC.

Property evaluated:

Structural

2.0 USES

The steel framing described in this report is used for framing of nonload-bearing interior walls, curtain walls and

A Subsidiary of the International Code Council®

load-bearing walls, floor joists, ceiling joists and furring.

3.0 DESCRIPTION

3.1 General:

The steel framing described in this report, consisting of structural C-shapes (studs and joists), tracks, furring channels and U-channels, is fabricated from coils of coldrolled steel. The C-shapes are manufactured with or without web punch-outs; all other framing members (tracks, U-channels and furring hat channels) are manufactured without web punch-outs. When provided in the structural C-shapes, punch-outs measuring up to 0.75 inch by 2 inches (19 mm by 51 mm) for the 2.5-inchdeep members and either 1.5 inches by 3.25 inches (38 mm by 83 mm) or 1.5 inches by 4 inches (38 mm by 102 mm) for the other sized members are located along the centerline of the webs. The minimum distance between the end of the C-shape and the near edge of the web punch-out is 10 inches (254 mm). The minimum distance between centerlines of punch-outs is 24 inches (610 mm). See Tables 1, 2, 7, 8 and Figure 1 for recognized framing section names, profiles and dimensions. The values in each of the tables for C-shapes are for C-shapes with punch-outs. See Table 10 for manufacturing locations.

3.2 Materials:

3.2.1 General: Steel framing members are available in design steel thicknesses ranging from 0.0188 inch to 0.1017 inch (0.478 mm to 2.58 mm), as shown in Table 3, and in the sizes and configurations shown in Tables 1, 2, 7, 8 and Figure 1.

3.2.2 Studs and Tracks: Studs and tracks are cold-formed from galvanized steel coils conforming to ASTM A653, SS Grade 33 or Grade 50, Class 1; or ASTM A1003, Structural Grade 33, Type H, (ST33H) or Structural Grade 50, Type H (ST50H). The steel has a minimum metallic coating listed for Type H and Type L in Table 1 of ASTM A1003.

3.2.3 U-channels: U-channels are cold-formed from galvanized steel coils conforming to ASTM A653, SS Grade 33; or ASTM A1003, Structural Grade 33, Type H (ST33H), with a minimum metallic coating listed for Type H and Type L in Table 1 of ASTM A1003.

3.2.4 Furring Channels: Furring channels are cold-formed from galvanized steel coils conforming to ASTM A1003, Nonstructural Grade 33 (NS33), with a minimum metallic coating listed for Type NS in Table 1 of ASTM A1003.

4.0 DESIGN AND INSTALLATION

4.1 Design:

4.1.1 IBC Method: The section properties indicated in Tables 4, 5, 7 and 8 have been determined in accordance

ICC-ES Evaluation Reports are not to be construed as representing aesthetics or any other attributes not specifically addressed, nor are they to be construed as an endorsement of the subject of the report or a recommendation for its use. There is no warranty by ICC Evaluation Service, LLC, express or implied, as to any finding or other matter in this report, or as to any product covered by the report.

with the applicable edition of the North American Specification for Design of Cold-formed Steel Structural Members (AISI). The allowable moments as indicated in Tables 4, 5, 7 and 8 are for use with Allowable Strength Design (ASD), and are for flexural members installed with the compression flange continuously braced. For other conditions of compression flange bracing, the allowable moment must be determined in accordance with the applicable edition of AISI. Allowable concentrated loads and reactions based on web crippling are shown in Table 6, for related web crippling loading conditions. The design of flexural members used for framing of nonload-bearing interior walls, curtain walls, load-bearing walls, floors or ceilings must address combined bending and web crippling, and combined bending and shear.

4.1.2 IRC Method: The steel framing members identified in Table 9 comply with the structural framing requirements of IRC Sections R505.2, R603.2 and R804.2, and qualify for use with the prescriptive requirements of the IRC. When steel framing members are used to construct buildings that do not conform to the applicable requirements of IRC Section R505.1.1, R603.1.1 or R804.1.1; and for steel framing members not identified in Table 3, the structural analysis and design must be in accordance with the IBC, as described in Section 4.1.1 of this report.

4.2 Installation:

The framing members must be installed in accordance with the applicable code, the approved plans and this report. If there is a conflict between the plans submitted for approval and this report, this report governs. The approved plans must be available at the jobsite at all times.

5.0 CONDITIONS OF USE

The CEMCO cold-formed steel framing described in this report complies with, or is a suitable alternative to what is specified in, those codes listed in Section 1.0 of this report, subject to the following conditions:

- **5.1** The framing members are installed in accordance with the applicable code, the approved construction documents and this report.
- **5.2** Minimum uncoated steel thickness of the framing members as delivered to the jobsite is at least 95 percent of the design steel thickness noted in Table 3.
- **5.3** Complete construction documents and calculations verifying compliance with this report must be submitted to the code official for each project. The calculations and construction documents must be prepared and sealed by a registered design professional where required by the statutes of the jurisdiction in which the project is to be constructed.

6.0 EVIDENCE SUBMITTED

Data in accordance with the ICC-ES Acceptance Criteria for Cold-formed Steel Framing Members (AC46), dated June 2012 (editorially revised April 2015).

7.0 IDENTIFICATION

At a spacing not exceeding 96 inches (2440 mm) on center, each framing member is stamped with the name of the manufacturer (see report holder or additional listee at the beginning of this report); the member designation as provided in Tables 1, 2, 7 and 8; the evaluation report number (ESR-3016); the minimum uncoated steel thickness in decimal inches; the steel designation and minimum specified yield strength; and the coating designation for framing members if other than G30 galvanization coating.

MEMBER	WEB ² (in)	FLANGE (in)	LIP (in)	THICKNESS DESIGNATION ³ (mils)	AREA (in²)	WEIGHT (lb/ft)	MEMBER	WEB ² (in)	FLANGE (in)	LIP (in)	THICKNESS DESIGNATION ³ (mils)	AREA (in²)	WEIGHT (lb/ft)
250S137-33	2.500	1.375	0.375	33	0.197	0.67	400S162-54	4.000	1.625	0.0566	54	0.443	1.51
250S137-43	2.500	1.375	0.375	43	0.255	0.87	400S162-68	4.000	1.625	0.0713	68	0.550	1.87
250S137-54	2.500	1.375	0.375	54	0.316	1.07	400S162-97	4.000	1.625	0.1017	97	0.762	2.59
250S137-68	2.500	1.375	0.375	68	0.390	1.33							
250S137-97	2.500	1.375	0.375	97	0.533	1.81	400S200-33	4.000	2.000	0.0346	33	0.310	1.05
250S162-33	2.500	1.625	0.500	33	0.223	0.76	400S200-43	4.000	2.000	0.0451	43	0.402	1.37
250S162-43	2.500	1.625	0.500	43	0.289	0.98	400S200-54	4.000	2.000	0.0566	54	0.500	1.70
250S162-54	2.500	1.625	0.500	54	0.358	1.22	400S200-68	4.000	2.000	0.0713	68	0.622	2.12
250S162-68	2.500	1.625	0.500	68	0.443	1.51	400S200-97	4.000	2.000	0.1017	97	0.864	2.94
250S162-97	2.500	1.625	0.500	97	0.610	2.07	400S250-43	4.000	2.500	0.0451	43	0.447	1.52
							400S250-54	4.000	2.500	0.0566	54	0.556	1.89
350S137-33	3.500	1.375	0.375	33	0.232	0.79	400S250-68	4.000	2.500	0.0713	68	0.693	2.36
350S137-43	3.500	1.375	0.375	43	0.300	1.02	400S250-97	4.000	2.500	0.1017	97	0.966	3.29
350S137-54		1.375	0.375	54	0.372	1.27	400S300-54	4.000	3.000	0.0566	54	0.641	2.18
350S137-68		1.375	0.375	68	0.461	1.57	400S300-68	4.000	3.000	0.0713	68	0.800	2.72
350S137-97		1.375	0.375	97	0.635	2.16	400S300-97	4.000	3.000	0.1017	97	1.118	3.80
350S162-33		1.625	0.500	33	0.258	0.88							
350S162-43		1.625	0.500	43	0.334	1.14	550S137-33	5.500	1.375	0.375	33	0.301	1.02
350S162-54		1.625	0.500	54	0.415	1.41	550S137-43	5.500	1.375	0.375	43	0.391	1.33
350S162-68		1.625	0.500	68	0.515	1.75	550S137-54	5.500	1.375	0.375	54	0.486	1.65
350S162-97		1.625	0.500	97	0.711	2.42	550S137-68	5.500	1.375	0.375	68	0.604	2.05
0000102 01	0.000	1.020	0.000	01	0.7 1 1		550S137-97	5.500	1.375	0.375	97	0.838	2.85
362S137-33	3 625	1.375	0.375	33	0.236	0.80	550S162-33	5.500	1.625	0.500	33	0.327	1.11
362S137-43		1.375	0.375	43	0.306	1.04	550S162-43	5.500	1.625	0.500	43	0.424	1.44
362S137-54		1.375	0.375	54	0.379	1.29	550S162-54	5.500	1.625	0.500	54	0.528	1.80
362S137-68		1.375	0.375	68	0.470	1.60	550S162-68	5.500	1.625	0.500	68	0.657	2.24
362S137-97	3.625	1.375	0.375	97	0.648	2.20	550S162-97	5.500	1.625	0.500	97	0.915	3.11
362S162-33		1.625	0.500	33	0.262	0.89	000010201	0.000		0.000		0.0.0	0
362S162-43		1.625	0.500	43	0.340	1.16	600S137-33	6.000	1.375	0.375	33	0.318	1.08
362S162-54		1.625	0.500	54	0.422	1.44	600S137-43	6.000	1.375	0.375	43	0.413	1.41
362S162-68		1.625	0.500	68	0.524	1.78	600S137-54	6.000	1.375	0.375	54	0.514	1.75
362S162-97	3.625	1.625	0.500	97	0.724	2.46	600S137-68	6.000	1.375	0.375	68	0.640	2.18
362S200-33		2.000	0.625	33	0.297	1.01	600S137-97	6.000	1.375	0.375	97	0.889	3.03
362S200-43		2.000	0.625	43	0.385	1.31	600S162-33	6.000	1.625	0.500	33	0.344	1.17
362S200-54		2.000	0.625	54	0.479	1.63	600S162-43	6.000	1.625	0.500	43	0.447	1.52
362S200-54		2.000	0.625	68	0.595	2.02	600S162-43	6.000	1.625	0.500	54	0.556	1.89
362S200-00	3.625	2.000	0.625	97	0.335	2.81	600S162-54	6.000	1.625	0.500	68	0.693	2.36
362S250-97		2.500	0.625	43	0.820	1.46	600S162-08	6.000	1.625	0.500	97	0.095	3.29
362S250-43		2.500	0.625	43 54	0.430	1.40	600S200-33	6.000	2.000	0.625	33	0.379	1.29
			0.625	-			600S200-33			0.625		0.379	
362S250-68 362S250-97		2.500 2.500	0.625	68 97	0.666	2.27 3.16	600S200-43		2.000	0.625	43 54	0.492	1.67 2.09
362S300-54 362S300-68		3.000	0.785	54	0.620	2.11	600S200-68		2.000	0.625	68	0.764	2.60
		3.000	0.875	68	0.773	2.63	600S200-97		2.000	0.625	97	1.067	3.63
362S300-97	3.625	3.000	0.875	97	1.080	3.67	600S250-43		2.500	0.625	43	0.537	1.83
4000407.00	4 000	1.075	0.0040	20	0.040	0.05	600S250-54		2.500	0.625	54	0.670	2.28
400S137-33		1.375	0.0346	33	0.249	0.85	600S250-68		2.500	0.625	68	0.836	2.84
400S137-43		1.375	0.0451	43	0.323	1.10	600S250-97		2.500	0.625	97	1.169	3.98
400S137-54		1.375	0.0566	54	0.401	1.36	600S300-54		3.000	0.785	54	0.754	2.57
400S137-68		1.375	0.0713	68	0.497	1.69	600S300-68		3.000	0.875	68	0.943	3.21
400S137-97		1.375	0.1017	97	0.686	2.33	600S300-97	6.000	3.000	0.875	97	1.321	4.50
400S162-33		1.625	0.0346	33	0.275	0.94							
400S162-43	4.000	1.625	0.0451	43	0.357	1.21	J						

TABLE 1—C-SHAPES

For **SI:** 1 inch = 25.4 mm, 1 plf = 1.4882 kg/m

MEMBER	WEB ² (in)	FLANGE (in)	LIP (in)	THICKNESS DESIGNATION ³ (mils)	AREA (in²)	WEIGHT (lb/ft)	MEMBER	WEB ² (in)	FLANGE (in)	LIP (in)	THICKNESS DESIGNATION ³ (mils)	AREA (in²)	WEIGHT (lb/ft)
800S137-331	8.000	1.375	0.375	33	0.388	1.32	1000S200-431	10.000	2.000	0.625	43	0.672	2.29
800S137-43	8.000	1.375	0.375	43	0.503	1.71	1000S200-54	10.000	2.000	0.625	54	0.839	2.86
800S137-54	8.000	1.375	0.375	54	0.627	2.13	1000S200-68	10.000	2.000	0.625	68	1.050	3.57
800S137-68	8.000	1.375	0.375	68	0.782	2.66	1000S200-97	10.000	2.000	0.625	97	1.474	5.02
800S137-97	8.000	1.375	0.375	97	1.093	3.72							
800S162-331	8.000	1.625	0.500	33	0.413	1.41	1000S250-431	10.000	2.000	0.625	43	0.717	2.44
800S162-43	8.000	1.625	0.500	43	0.537	1.83	1000S250-54	10.000	2.500	0.625	54	0.896	3.05
800S162-54	8.000	1.625	0.500	54	0.670	2.28	1000S250-68	10.000	2.500	0.625	68	1.121	3.81
800S162-68	8.000	1.625	0.500	68	0.836	2.84	1000S250-97	10.000	2.500	0.625	97	1.576	5.36
800S162-97	8.000	1.625	0.500	97	1.169	3.98	1000S300-54	10.000	3.000	0.785	54	0.981	3.34
800S200-331	8.000	2.000	0.625	33	0.448	1.52	1000S300-68	10.000	3.000	0.875	68	1.228	4.18
800S200-43	8.000	2.000	0.625	43	0.582	1.98	1000S300-97	10.000	3.000	0.875	97	1.728	5.88
800S200-54	8.000	2.000	0.625	54	0.726	2.47							
800S200-68	8.000	2.000	0.625	68	0.907	3.09	1200S162-541	12.000	1.625	0.500	54	0.896	3.05
800S200-97	8.000	2.000	0.625	97	1.271	4.32	1200S162-68	12.000	1.625	0.500	68	1.121	3.81
800S250-43	8.000	2.500	0.625	43	0.627	2.13	1200S162-97	12.000	1.625	0.500	97	1.576	5.36
800S250-54	8.000	2.500	0.625	54	0.783	2.66	1200S200-541	12.000	2.000	0.625	54	0.953	3.24
800S250-68	8.000	2.500	0.625	68	0.978	3.33	1200S200-68	12.000	2.000	0.625	68	1.192	4.06
800S250-97	8.000	2.500	0.625	97	1.372	4.67	1200S200-97	12.000	2.000	0.625	97	1.677	5.71
800S300-54	8.000	3.000	0.785	54	0.868	2.95	1200S250-541	12.000	2.500	0.625	54	1.009	3.43
800S300-68	8.000	3.000	0.875	68	1.085	3.69	1200S250-68	12.000	2.500	0.625	68	1.263	4.30
800S300-97	8.000	3.000	0.875	97	1.525	5.19	1200S250-97	12.000	2.500	0.625	97	1.779	6.05
							1200S300-541	12.000	3.000	0.785	54	1.094	3.72
1000S162-431	10.000	1.625	0.500	43	0.627	2.13	1200S300-68	12.000	3.000	0.875	68	1.370	4.66
1000S162-54	10.000	1.625	0.500	54	0.783	2.66	1200S300-97	12.000	3.000	0.875	97	1.932	6.57
1000S162-68	10.000	1.625	0.500	68	0.978	3.33							
1000S162-97	10.000	1.625	0.500	97	1.372	4.67							

TABLE 1—C-SHAPES (Continued)

For SI: 1 inch = 25.4 mm, 1 plf = 1.4882 kg/m

¹ Web-height to thickness ratio exceeds 200. Web Stiffeners are required at all support points and concentrated loads. Punchouts/holes in the web are outside ² Web height measured from outside face to outside face of flanges.
 ³ See Table 3 for design thickness, minimum thickness, and inside bend radius.

MEMBER	WEB ² (in)	FLANGE (in)	THICKNESS DESIGNATION ³ (mils)	AREA (in²)	WEIGHT (lb/ft)	MEMBER	WEB ² (in)	FLANGE (in)	THICKNESS DESIGNATION ³ (mils)	AREA (in²)	WEIGHT (lb/ft)
250T125-33	2.500	1.250	33	0.173	0.59	362T200-33	3.625	2.000	33	0.264	0.90
250T125-43	2.500	1.250	43	0.225	0.77	362T200-43	3.625	2.000	43	0.343	1.17
250T125-54	2.500	1.250	54	0.282	0.96	362T200-54	3.625	2.000	54	0.431	1.47
250T125-68	2.500	1.250	68	0.355	1.21	362T200-68	3.625	2.000	68	0.543	1.85
250T125-97	2.500	1.250	97	0.506	1.72	362T200-97	3.625	2.000	97	0.773	2.63
250T150-33	2.500	1.500	33	0.190	0.65	362T250-43	3.625	2.500	43	0.389	1.32
250T150-43	2.500	1.500	43	0.248	0.84	362T250-54	3.625	2.500	54	0.487	1.66
250T150-54	2.500	1.500	54	0.311	1.06	362T250-68	3.625	2.500	68	0.614	2.09
250T150-68	2.500	1.500	68	0.391	1.33	362T250-97	3.625	2.500	97	0.875	2.98
250T150-97	2.500	1.500	97	0.557	1.90						
250T200-33	2.500	2.000	33	0.225	0.76	400T125-33	4.000	1.250	33	0.225	0.76
250T200-43	2.500	2.000	43	0.293	1.00	400T125-43	4.000	1.250	43	0.293	1.00
250T200-54	2.500	2.000	54	0.367	1.25	400T125-54	4.000	1.250	54	0.367	1.25
250T200-68	2.500	2.000	68	0.462	1.57	400T125-68	4.000	1.250	68	0.462	1.57
250T200-97	2.500	2.000	97	0.659	2.24	400T125-97	4.000	1.250	97	0.659	2.24
250T250-43	2.500	2.500	43	0.338	1.15	400T150-33	4.000	1.500	33	0.242	0.82
250T250-54	2.500	2.500	54	0.424	1.44	400T150-43	4.000	1.500	43	0.315	1.07
250T250-68	2.500	2.500	68	0.534	1.82	400T150-54	4.000	1.500	54	0.396	1.35
250T250-97	2.500	2.500	97	0.761	2.59	400T150-68	4.000	1.500	68	0.498	1.69
						400T150-97	4.000	1.500	97	0.710	2.41
350T125-33	3.500	1.250	33	0.207	0.71	400T200-33	4.000	2.000	33	0.277	0.94
350T125-43	3.500	1.250	43	0.270	0.92	400T200-43	4.000	2.000	43	0.360	1.23
350T125-54	3.500	1.250	54	0.339	1.15	400T200-54	4.000	2.000	54	0.452	1.54
350T125-68	3.500	1.250	68	0.427	1.45	400T200-68	4.000	2.000	68	0.569	1.94
350T125-97	3.500	1.250	97	0.608	2.07	400T200-97	4.000	2.000	97	0.811	2.76
350T150-33	3.500	1.500	33	0.225	0.76	400T250-43	4.000	2.500	43	0.405	1.38
350T150-43	3.500	1.500	43	0.293	1.00	400T250-54	4.000	2.500	54	0.509	1.73
350T150-54	3.500	1.500	54	0.367	1.25	400T250-68	4.000	2.500	68	0.641	2.18
350T150-68	3.500	1.500	68	0.462	1.57	400T250-97	4.000	2.500	97	0.913	3.11
350T150-97	3.500	1.500	97	0.659	2.24						
350T200-33	3.500	2.000	33	0.259	0.88	550T125-33	5.500	1.250	33	0.277	0.94
350T200-43	3.500	2.000	43	0.338	1.15	550T125-43	5.500	1.250	43	0.360	1.23
350T200-54	3.500	2.000	54	0.424	1.44	550T125-54	5.500	1.250	54	0.452	1.54
350T200-68	3.500	2.000	68	0.534	1.82	550T125-68	5.500	1.250	68	0.569	1.94
350T200-97	3.500	2.000	97	0.761	2.59	550T125-97	5.500	1.250	97	0.811	2.76
350T250-43	3.500	2.500	43	0.383	1.30	550T150-33	5.500	1.500	33	0.294	1.00
350T250-54	3.500	2.500	54	0.480	1.63	550T150-43		1.500	43	0.383	1.30
350T250-68	3.500	2.500	68	0.605	2.06	550T150-54		1.500	54	0.480	1.63
350T250-97	3.500	2.500	97	0.862	2.93	550T150-68		1.500	68	0.605	2.06
							5.500	1.500	97	0.862	2.93
362T125-33	3.625	1.250	33	0.212	0.72	550T200-33		2.000	33	0.329	1.12
362T125-43	3.625	1.250	43	0.276	0.94	550T200-43	5.500	2.000	43	0.428	1.46
362T125-54	3.625	1.250	54	0.346	1.18	550T200-54		2.000	54	0.537	1.83
362T125-68	3.625	1.250	68	0.436	1.48	550T200-68		2.000	68	0.676	2.30
362T125-97	3.625	1.250	97	0.621	2.11	550T200-97		2.000	97	0.964	3.28
362T150-33	3.625	1.500	33	0.229	0.78	550T250-43	5.500	2.500	43	0.473	1.61
362T150-43	3.625	1.500	43	0.298	1.02	550T250-54	5.500	2.500	54	0.594	2.02
362T150-54	3.625	1.500	54	0.374	1.27	550T250-68		2.500	68	0.748	2.54
362T150-68	3.625	1.500	68	0.471	1.60	550T250-97	5.500	2.500	97	1.066	3.63
			97		2.29				۰.		2.00

TABLE 2-TRACKS

MEMBER	WEB ² (in)	FLANGE (in)	THICKNESS DESIGNATION ³ (mils)	AREA (in ²)	WEIGHT (lb/ft)	MEMBER	WEB ² (in)	FLANGE (in)	THICKNESS DESIGNATION ³ (mils)	AREA (in ²)	WEIGHT (lb/ft)
600T125-33	6.000	1.250	33	0.294	1.00	800T250-43	8.000	2.500	43	0.586	1.99
600T125-43	6.000	1.250	43	0.383	1.30	800T250-54	8.000	2.500	54	0.735	2.50
600T125-54	6.000	1.250	54	0.480	1.63	800T250-68	8.000	2.500	68	0.926	3.15
600T125-68	6.000	1.250	68	0.605	2.06	800T250-97	8.000	2.500	97	1.320	4.49
600T125-97	6.000	1.250	97	0.862	2.93						
600T150-33	6.000	1.500	33	0.311	1.06	1000T125-431	10.000	1.250	43	0.563	1.92
600T150-43	6.000	1.500	43	0.405	1.38	1000T125-54	10.000	1.250	54	0.707	2.41
600T150-54	6.000	1.500	54	0.509	1.73	1000T125-68	10.000	1.250	68	0.890	3.03
600T150-68	6.000	1.500	68	0.641	2.18	1000T125-97	10.000	1.250	97	1.269	4.32
600T150-97	6.000	1.500	97	0.913	3.11	1000T150-431	10.000	1.500	43	0.586	1.99
600T200-33	6.000	2.000	33	0.346	1.18	1000T150-54	10.000	1.500	54	0.735	2.50
600T200-43	6.000	2.000	43	0.451	1.53	1000T150-68	10.000	1.500	68	0.926	3.15
600T200-54	6.000	2.000	54	0.565	1.92	1000T150-97	10.000	1.500	97	1.320	4.49
600T200-68	6.000	2.000	68	0.712	2.42	1000T200-431	10.000	2.000	43	0.631	2.15
600T200-97	6.000	2.000	97	1.015	3.45	1000T200-54	10.000	2.000	54	0.792	2.69
600T250-43	6.000	2.500	43	0.496	1.69	1000T200-68	10.000	2.000	68	0.997	3.39
600T250-54	6.000	2.500	54	0.622	2.12	1000T200-97	10.000	2.000	97	1.422	4.84
600T250-68	6.000	2.500	68	0.783	2.67	1000T250-431	10.000	2.500	43	0.676	2.30
600T250-97	6.000	2.500	97	1.116	3.80	1000T250-54	10.000	2.500	54	0.848	2.89
						1000T250-68	10.000	2.500	68	1.068	3.64
800T125-331	8.000	1.250	33	0.363	1.24	1000T250-97	10.000	2.500	97	1.523	5.18
800T125-43	8.000	1.250	43	0.473	1.61						
800T125-54	8.000	1.250	54	0.594	2.02	1200T125-541	12.000	1.250	54	0.820	2.79
800T125-68	8.000	1.250	68	0.748	2.54	1200T125-68	12.000	1.250	68	1.033	3.51
800T125-97	8.000	1.250	97	1.066	3.63	1200T125-97	12.000	1.250	97	1.472	5.01
800T150-331	8.000	1.500	33	0.380	1.29	1200T150-541	12.000	1.500	54	0.848	2.89
800T150-43	8.000	1.500	43	0.496	1.69	1200T150-68	12.000	1.500	68	1.068	3.64
800T150-54	8.000	1.500	54	0.622	2.12	1200T150-97	12.000	1.500	97	1.523	5.18
800T150-68	8.000	1.500	68	0.783	2.67	1200T200-541	12.000	2.000	54	0.905	3.08
800T150-97	8.000	1.500	97	1.116	3.80	1200T200-68	12.000	2.000	68	1.140	3.88
800T200-331	8.000	2.000	33	0.415	1.41	1200T200-97	12.000	2.000	97	1.625	5.53
800T200-43	8.000	2.000	43	0.541	1.84	1200T250-541	12.000	2.500	54	0.962	3.27
800T200-54	8.000	2.000	54	0.679	2.31	1200T250-68	12.000	2.500	68	1.211	4.12
800T200-68	8.000	2.000	68	0.854	2.91	1200T250-97	12.000	2.500	97	1.727	5.88
800T200-97	8.000	2.000	97	1.218	4.15		-				

TABLE 2—TRACKS (Continued)

For SI: 1 inch = 25.4 mm, 1 plf = 1.4882 kg/m

¹ Web-height to thickness ratio exceeds 200. Web Stiffeners are required at all support points and concentrated loads.
 ² Web height measured from inside face to inside face of flanges.
 ³ See Table 3 for design thickness, minimum thickness, and inside bend radius.

TABLE 3—UNCOATED STEEL THICKNESS

THICKNESS DESIGNATION (mils)	DESIGN THICKNESS (in)	MINIMUM THICKNESS ¹ (in)	INSIDE BEND RADIUS (in)
18	0.0188	0.0179	0.0843
27	0.0283	0.0269	0.0796
33	0.0346	0.0329	0.0764
43	0.0451	0.0428	0.0712
54	0.0566	0.0538	0.0849
68	0.0713	0.0677	0.1069
97	0.1017	0.0966	0.1525

For SI: 1 inch = 25.4 mm.

¹Minimum thickness represents 95 percent of the design thickness and is the minimum acceptable thickness of the uncoated steel delivered to the jobsite.

٦											1	r	Т		T					1	1	-								1		ſ
		MEMBER	250S137-33	250S137-43	250S 137-54	250S137-68	250S 137-97	250S 162-33	250S162-43	250S 162-54	250S 162-68	250S 162-97		3505137-33	350S 137-54	350S 137-68	350S137-97	350S 162-33	350S162-43	350S 162-54	350S 162-68	350S 162-97	362S137-33	362S137-43	362S137-54	362S137-68	362S137-97	362S162-33	362S162-43	362S162-54	362S162-68	
		(in ⁴)	0.203	0.261	0.318	0.386	0.506	0.235	0.302	0.370	0.450	0.596		0.441	0.696	0.849	1.130	0.508	0.654	0.804	0.985	1.320	0.479	0.616	0.756	0.922	1.229	0.551	0.710	0.873	1.069	
		Sx (in ³)	0.163	0.208	0.255	0.309	0.405	0.188	0.242	0.296	0.360	0.477		702.0	0.398	0.485	0.646	0.290	0.374	0.460	0.563	0.754	0.264	0.340	0.417	0.509	0.678	0.304	0.392	0.481	0.590	1
	GROSS	(in) R _x	1.015	1.010	1.004	0.994	0.975	1.027	1.022	1.016	1.007	0.989		1.380	1.367	1.357	1.334	1.404	1.400	1.392	1.383	1.362	1.424	1.419	1.411	1.401	1.377	1.450	1.445	1.438	1.429	
3		(in ⁴)	0.052	0.067	0.080	0.095	0.120	0.087	0.111	0.135	0.162	0.209		0.035	0.090	0.107	0.136	0.098	0.125	0.152	0.184	0.238	0.059	0.075	0.091	0.109	0.137	0.099	0.127	0.154	0.186	
		(in) Ry	0.515	0.511	0.504	0.495	0.475	0.624	0.620	0.613	0.605	0.586		0.203	0.492	0.482	0.462	0.617	0.612	0.606	0.597	0.578	0.501	0.497	0.490	0.480	0.460	0.616	0.611	0.604	0.596	
		(in ⁴)	0.203	0.261		I	1	0.235	0.302	1	I	1		0.441	1	-	1	0.508	0.654	1	I	1	0.479	0.616	1	1	1	0.551	0.710	I	I	
		(in ³)	0.158	0.205		1	1	0.180	0.240	1	I	1	_	0.223	-	-	1	0.257	0.357	1	I	1	0.232	0.320	1	1	1	0.268	0.372	I	I	
		Ma (in-k)	3 3.11	5 4.53	1	I	1) 3.55	5.22	1	1	1	-	4.41	_		1	5.08	7.05	1	1	1	2 4.59	6.32	1	1	1	3 5.29	2 7.34	1	1	
	ROPER	(Ib)	975	1265			-	975	1265	1	I	1		1730	1	1	1	1024	1739	1	I	1	1024	1739	1	1	1	1024	1739	I	I	
	EFFECTIVE PROPERTIES" (Fy = 33 ksi)	V _{anet} (Ib)	399	394	I	I	1	399	394	1	1	1		487	1	-	1	487	631	1	1	1	521	676	1	1	1	521	676	1	1	
	= 33 KSI)	ĴŗĹ	35.5	33.7	-	1	-	44.1	42	1	1	1	2	34.8 34.7	1	-	1	42.8	42.6	I	1	1	34.7	34.6	1	1	1	42.6	42.5	1	I	
		M _{ad} (in-k)	3.10	4.60	-	-	-	3.56	5.26	I	I	I		4.54	I	1	I	5.21	7.31	1	I	1	4.72	6.65	1	I	I	5.43	7.63	I	I	
		(in ⁴)	I	1	0.318	0.386	0.506	1	1	0.370	0.450	0.596		1	0.696	0.849	1.130	I	1	0.804	0.985	1.320	1	1	0.756	0.922	1.229	1	I	0.873	1.069	1 1 2 2
	6776	(in ³)	I	1	0.244	0.308	0.405	1	1	0.284	0.357	0.477		1	0.366	0.472	0.629	I	1	0.426	0.549	0.738		1	0.381	0.493	0.662	1	1	0.444	0.574	944 0
		Ma (in-k)	I	1	8.22	10.65	14.75	I	I	9.42	12.11	16.93		1	10.95	14.12	22.9	I	1	12.74	16.44	26.18	1	I	11.42	14.77	24.1	1	I	13.28	17.18	07 FO
		(lb)	I	I	2353	2866	3798	I	I	2353	2866	3798		I	3372	4202	5704	I	1	3372	4202	5704	1	I	3372	4370	5943	1	I	3372	4370	5043
5	ERTIES" (Fy =	V _{anet} (Ib)		-	565	519	429	1	I	565	519	429		1	947	897	775	1	I	947	897	775	-	1	1016	1004	875	1	I	1016	1004	
:	= 50 KSI)	٦Ē	I	1	27.1	26.8	26.5	I	1	33.9	33.7	33.5		1	28	27.9	27.9	I	1	34.5	34.5	34.7	-	I	27.9	27.8	27.8	1	1	34.4	34.3	34 л
		M _{ad} (in-k)	I	I	8.36	10.68	14.74	1	1	9.48	12.21	16.91		1	11.43	14.52	19.34	I	1	13.06	16.86	22.57		1	11.91	15.24	20.30	1	I	13.58	17.66	23 71
		Jx1000 (in ⁴)	0.079	0.173	0.337	0.661	1.839	0.089	0.196	0.383	0.752	2.102		0.003		0.782	1 2.189	0.103	0.227	ò 0.443	0.872	2.452	0.094	0.207	0.405	0.797	2.233	0.105	0.230	3 0.451	0.887	2 496
	IORS	0 (in [®])	0.076	0.096	0.115	0.138	0.176	0.146	0.184	0.223	0.268	0.346	_	0.103		0.280	0.361	0.277	0.350	0.426	0.514	0.672	0.165	0.208	0.251	0.302		0.297	0.376	0.457	0.552	0 7 23
	SIONAL) (in) X	6 -1.141	6 -1.129	5 -1.115	8 -1.096	6 -1.057	6 -1.470	4 -1.457	3 -1.443	8 -1.424	6 -1.386	_	3 -1.010		0 -0.973	1 -0.935	7 -1.324	0 -1.312	6 -1.298	4 -1.280	2 -1.242	5 -1.003	8 -0.991	1 -0.978	2 -0.959	0 -0.922	7 -1.308	6 -1.297	7 -1.283	2 -1.264	3 -1 226
	I ORSIONAL PROPERTIES	(i) n	41 0.677	29 0.670	15 0.663	96 0.653	57 0.633	70 0.859	57 0.852	43 0.845	24 0.835	36 0.815	-			73 0.598	35 0.579	24 0.796	12 0.789	98 0.782	30 0.772	42 0.752	03 0.615	91 0.608	78 0.601	59 0.592	22 0.573	0.789	97 0.782	33 0.774	34 0.765	26 0 745
į	RIIES	 چ	7 1.612	70 1.599	3 1.583	53 1.561	3 1.514	59 1.898	52 1.885	1.868	35 1.846	1.801	_	1 1./80		98 1.738	79 1.693	6 2.026	39 2.014	32 1.998	1.977	52 1.932	1.813	1.801)1 1.785)2 1.764	73 1.720	39 2.048	32 2.036	4 2.020	35 1.998	5 1 05
		ہ <u>ر</u>	12 0.499	99 0.501	33 0.504	ŝ1 0.507	14 0.513	98 0.401	35 0.402	38 0.403	16 0.405	01 0.408				38 0.687	93 0.695	26 0.573	14 0.575	98 0.578	77 0.581	32 0.587	13 0.694	01 0.697	35 0.700	34 0.704	20 0.713	18 0.592	36 0.594	0.597	98 0.600	1 954 0 606
L	3	4	~		L		~					~	1	-10		4				~	<u> </u>						~~			L *	1	

TABLE 4—C-SHAPE PROPERTIES⁴

For St: 1 inch = 25.4 mm; 1 inch³ = 1.64x10⁴; 1 inch⁴ = 4.15x10⁹ mm⁴; 1 inch⁹ = 2.69x10⁹ mm⁹; 1 lb/lin ft = 14.5939 N/m; 1 kip-in = 112.99 N-m; 1 ksl = 6.89 Mpa; 1 lb = 4.45 N.

362S162-97 1.435 0.792 1.408 0.241 0.577

I

I

1.435 0.776 27.52 5943

875 34.5

23.71

2.496

0.723 -1.226 0.745 1.954 0.606

4000300-08	0000000	400S300-54	400S250-97	400S250-68	400S250-54	400S250-43	400S200-97	400S200-68	400S200-54	400S200-43	400S200-33	400S162-97	400S162-68	400S162-54	400S162-43	400S162-33	400S137-97	400S137-68	400S137-54	400S137-43	400S137-33	362S300-97	362S300-68	362S300-54	362S250-97	362S250-68	362S250-54	362S250-43	362S200-97	362S200-68	362S200-54	362S200-43	362S200-33	MEMBER		
3.007	2.195	1.776	2.541	1.864	1.512	1.224	2.155	1.589	1.292	1.047	0.812	1.812	1.346	1.098	0.892	0.692	1.557	1.165	0.953	0.776	0.603	2.400	1.756		2.027	1.490	1.210	0.980	1.711	1.265	1.030	0.836	0.648	(in ⁴)		
1.504	1.098	0.888	1.271	0.932	0.756	0.612	1.077	0.795	0.646	0.524	0.406	0.906	0.673	0.549	0.446	0.346	0.779	0.582	0.477	0.388	0.301	1.324	0.969		1.118	0.822	0.668	0.541	0.944	0.698	0.568	0.461	0.358	(in ³)		
1.640	1.657	1.664	1.622	1.640	1.649	1.655	1.579	1.599	1.608	1.615	1.619	1.542	1.564	1.574	1.581	1.586	1.507	1.531	1.542	1.551	1.556	 1.491	1.507		1.478	1.496	1.504	1.510	1.440	1.458	1.467	1.474	1.478	(in R	GRUSS	
1.420	1.048	0.852	0.801	0.599	0.490	0.399	0.462	0.349	0.287	0.235	0.183	0.249	0.192	0.159	0.131	0.103	0.142	0.112	0.094	0.078	0.061	 1.368	1.010	_	0.772	0.578	0.473	0.385	0.446	0.337	0.277	0.227	0.177	(in ⁴)		
1.127	1.145	1.153	0.911	0.929	0.938	0.945	0.731	0.750	0.758	0.764	0.769	0.572	0.591	0.600	0.606	0.611	0.454	0.475	0.484	0.491	0.496	1.126	1.143	1.151	0.912	0.931	0.940	0.946	0.735	0.753	0.761	0.767	0.772	(in)		
I	I				1	1.224	I	I	I	1.047	0.812		-		0.892	0.692				0.776	0.603	-	-	1		I		0.980	-	I		0.836	0.647	(in ⁴)		
	-					0.503			-	0.478	0.328				0.417	0.299				0.359	0.259							0.449				0.427	0.294	S _x (in ³)	EFFECT	
	I				1	9.93	1	I	I	9.45	6.49		-		8.23	5.91		-		7.09	5.12			I	-		-	8.88		-		8.43	5.81	Ma (in-k)	ועב דאמ	1
I	1		-	-	1	1739	I	1	I	1739	976	-	I	-	1739	976	-	-		1739	976	 	-	I	-	-	1	1739	-	-		1739	1024	(II) (dl)	EFFECTIVE PROPERTIES	
I	-	-	I	I	I	810	I	I	I	810	595	I	I	I	810	595	I	-		810	595	-		-	-	-	1	676		I		676	521	V _{anet} (Ib)	(F y =	ì
I	I			-	1	63.7	I	1	I	53	53.1	-	1	-	42.2	42.3		-		34.4	34.5		-	-	-	-	1	64.1	-	1		53.5	53.5	٦Ē	33 KSI)	
I	ł				1	10.42	I	I	I	9.74	6.90		-		8.54	6.06				7.47	5.28	-	-	I		1		9.36	-			8.70	6.19	M _{ad} (in-k)		
3.007	2.195	1.734	2.541	1.864	1.506	I	2.155	1.589	1.292	I	I	1.812	1.346	1.098	I	-	1.557	1.165	0.953	-	I	2.400	1.756	1.386	2.027	1.490	1.205	I	1.711	1.265	1.030	1	-	(in ⁴)		
1.43	0.913	0.705	1.191	0.775	0.576	I	1.063	0.751	0.549	I		0.892	0.648	0.498	I	-	0.764	0.558	0.428	-	I	1.259	0.812	0.628	1.046	0.689	0.514	I	0.928	0.666	0.49	1	-	(in ³)	EFFEC	1111
42.81		21.11	40.06	23.19	17.24	1	36.68	22.48	16.43	I	I	31.64	19.41	14.9	I		27.81	16.7	12.82		I	37.68	24.31	18.81	35.17	20.63	15.4	I	32.03	19.95	14.66	-	-	(in-k)	ועב דע	1
6658	4871	3372	6658	4871	3372	1	6658	4871	3372	I	I	6658	4871	3372	I		6658	4871	3372		I	5943	4370	3372	5943	4370	3372	I	5943	4370	3372	1	-	V _{ag} (Ib)	CIIVE PROPERTIES (Fy =	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
1207	1356	1223	1207	1356	1223	I	1207	1356	1223	I	I	1207	1356	1223			1207	1356	1223		-	875	1004	1016	875	1004	1016		875	1004	1016	-		V _{anet} (Ib)	=S" (Fy =)2 1
66.2	65.8	65.7	51.9	51.6	51.6	-	43	42.9	42.9	I	-	34	34	34.1			27.5	27.6	27.7		Ι	67.3	66.7	66.6	52.5	52	52	-	43.7	43.4	43.3	-]ت ۲	50 KSI)	
44.72	28.36	21.12	38.05	24.76	18.42	I	32.25	23.05	17.31	I	I	27.13	20.15	15.25	-		23.32	17.43	13.39			38.69	25.48	19.02	33.47	22.16	16.55		28.26	20.51	15.46	-		M _{ad} (in-k)		
3.855	1.356	0.685	3.329	1.174	0.594	0.303	2.978	1.054	0.534	0.272	0.124	2.628	0.933	0.473	0.242	0.110	2.365	0.842	0.428	0.219	0.099	3.723	1.310	0.662	3.197	1.129	0.571	0.292	2.847	1.008	0.511	0.261	0.118	Jx1000 (in ⁴)		
6.317	4.683	3.819	2.978	2.225	1.821	1.486	1.749	1.318	1.083	0.886	0.697	0.889	0.677	0.560	0.460	0.363	0.486	0.375	0.311	0.257	0.204	5.337	3.965	3.237	2.452	1.837	1.506	1.230	1.441	1.089	0.896	0.734	0.577	(in)	IORSIC	
-2.735	-2.774	-2.792	-2.066	-2.105	-2.124	-2.139	-1.605	-1.643	-1.662	-1.676	-1.688	-1.182	-1.220	-1.238	-1.252	-1.263	-0.885	-0.922	-0.940	-0.954	-0.965	-2.803	-2.841	-2.860	-2.126	-2.165	-2.184	-2.199	-1.658	-1.696	-1.715	-1.729	-1.741	(in)⊗	NAL PR	
1.583	1.603	1.613	1.214	1.235	1.244	1.252	0.963	0.983	0.993	1.000	1.007	0.725	0.745	0.754	0.761	0.768	0.555	0.574	0.583	0.591	0.597	1.610	1.630	1.640	1.239	1.259	1.269	1.277	0.986	1.006	1.016	1.024	1.030	(în m	IORSIONAL PROPERTIES	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
3.383	3.428	3.449	2.780	2.826	2.848	2.864	2.368	2.412	2.433	2.449	2.462	2.025	2.069	2.090	2.106	2.118	1.806	1.849	1.870	1.885	1.897		3.413		2.746	2.791	2.813	2.830	2.315	2.360	2.382	2.398	2.411	(in)	E U	;
0.346	0.345	0.345	0.448	0.445	0.444	0.443	0.540	0.536	0.534	0.532	0.530	0.659	0.653	0.649	0.647	0.644	0.760	0.751	0.747	0.744	0.741	0.307	0.307	0.307	0.400	0.398	0.397	0.396	0.487	0.484	0.482	0.480	0.478	β		

TABLE 4—C-SHAPE PROPERTIES⁴ (Continued)

ESR-3016
Most I
Most Widely
Accepted
and
Trusted

τ
۵Ĵ
Q
Ð
9
<u>ę</u>
2

800S137-97	800S 137-68	800S137-54	800S137-43	800S137-331	600S300-97	600S300-68	600S300-54	600S250-97	600S250-68		600S250-43	600S200-97	600S200-68	600S200-54	600S200-43	600S200-33	600S 162-97	600S162-68	600S 162-54	600S162-43	600S 162-33		600S137-68	600S137-54	600S137-43	600S137-33	550S 162-97	550S 162-68	550S 162-54	550S 162-43	550S 162-33	550S 137-97	550S 137-68	550S 137-54	550S137-43	550S137-33	MEMBER	
8.597	6.303	5.110	4.134	3.198	7.639	5.534	4.462	6.496	4.727	3.819	3.082	5.612	4.101	3.319	2.683	2.075	4.797	3.525	2.860	2.316	1.793	4.188	3.094	2.518	2.042	1.582	3.886	2.861	2.324	1.883	1.458	3.380	2.503	2.039	1.655	1.283	ا _x (in ⁴)	
2.149	1.576	1.277	1.033	0.799	2.546	1.845	1.487	2.165	1.576	1.273	1.027	1.871	1.367	1.106	0.894	0.692	1.599	1.175	0.953	0.772	0.598	1.396	1.031	0.839	0.681	0.527	1.413	1.040	0.845	0.685	0.530	1.229	0.910	0.741	0.602	0.467	S _x (in ³)	
2.805	2.839	2.855	2.866	2.873	2.404	2.423	2.432	2.357	2.378	2.388	2.396	2.293	2.316	2.327	2.335	2.340	2.229	2.255	2.267	2.276	2.282	2.170	2.200	2.213	2.223	2.229	2.061	2.086	2.098	2.107	2.112	2.008	2.036	2.049	2.059	2.064	(in)	01000
0.169	0.134	0.112	0.093	0.073	1.649	1.214	0.986	0.923	0.688	0.562	0.458	0.530	0.400	0.328	0.268	0.209	0.283	0.218	0.180	0.148	0.116	0.159	0.125	0.105	0.087	0.069	0.276	0.212	0.176	0.145	0.113	0.155	0.123	0.103	0.085	0.067	لې (in ⁴)	
0.394	0.414	0.423	0.430	0.435	1.117	1.135	1.143	0.889	0.908	0.917	0.923	0.705	0.723	0.732	0.739	0.743	0.541	0.560	0.570	0.576	0.581	0.422	0.443	0.452	0.459	0.464	0.549	0.568	0.577	0.584	0.589	0.430	0.451	0.460	0.467	0.472	(in)	
	-	-	4.001	2.998	-			-		I	3.082		-	-	2.683	2.058			-	2.316	1.793	I	-	I	2.041	1.548	I	I	I	1.883	1.458	-	-	I	1.655	1.283	(in ⁴)	
1	-	1	0.896	0.622	-		I			I	0.918	1		-	0.873	0.621	1	1	-	0.767	0.577	I	I	I	0.645	0.455	1	1	1	0.681	0.512	-	-	I	0.592	0.453	(in ³)	
1	-	-	17.70	12.30	-	1	1		1	I	18.14		1	-	17.24	12.28	-		-	16.68	11.41	I	-	I	12.74	8.98	I	I	1	14.79	10.11	-	-	I	13.08	8.95	Ma (in-k)	
	-	-	1051	474	-	-			-	I	1416	1	-		1416	638	-	1	-	1416	638	I	-	I	1416	638	I	I	I	1550	699	-	-	I	1550	699	V _{ag} (Ib)	
	-		1051	474	-			-		1	1240	-	-		1240	638	-	-	-	1240	638	1	-		1240	638	1	I	-	1199	699	-	-		1199	669	V _{anet} (Ib)	- C (- y
		-	32.2	32.5	-		1	1		I	62.4	I	-	-	51.5	51.6	-	I	-	39	41.1	I	I	I	33.2	33.5	1	I	1	39.2	41.4	-	-	1	31.7	33.7] ۲	00 101
-		1	15.76	10.71	 	1	I		1	I	16.21	I	-	-	15.38	10.76	-	I		14.47	9.48	I	I	I	11.83	8.72	I	I	1	13.14	8.62	-		I	11.61	7.49	M _{ad} (in-k)	
8.597	6.285	4.974	1	1	7.639	5.534	4.332	6.496	4.723	3.766	-	5.612	4.101	3.319			4.797	3.525	2.860	-	-	4.188	3.094	2.518	I	1	3.886	2.861	2.324		-	3.380	2.503	2.039	1	1	(in ⁴)	
2.149	1.468	1.083	1	1	2.442	1.61	1.277	2.063	1.386	1.069	1	1.871	1.317	1.015	-	-	1.599	1.164	0.916	-	1		1.03	0.777	I	1	1.413	1.031	0.811		-	1.229	0.909	0.714	-	1	(in ³)	[
64.35	43.96	32.42	I	I	 73.11	48.2	38.23	69.38	41.49	32	1	64.53	43.71	30.4	-	-	56.73	39.47	30.33	-	-		30.84	23.26	I	1	50.13	34.94	26.86	-	-	44.72	31.42	24.03	1	I	Ma (in-k)	
10885	4221	2091	I	I	10472	5350	2823	10472	5350	2823	I	10472	5350	2823			10472	5350	2823	-			5350	2823	I	I	9518	5350	3093	-	-	9518	5350	3093	-	I	(lb)	
5938	3367	2091	1	I	3805	2879	1947	3805	2879	1947	I	3805	2879	1947		I	3805	2879	1947	-	I	3805	2879	1947	1	I	3026	2532	1881	-	-	3026	2532	1881	1	1	V _{anet} (Ib)	
25	25.6	25.9	I	I	58.8	59	59.1	47.3	50.4	50.5		38.3	39.3	41.6	-	-	29.8	30.8	31.4	-		23.6	26.5	26.8	I	1	30	31.1	31.6	-	-	23.8	24.9	25.5	1	I]ت ۲	00 101
63.90	39.61	28.46	1	I	64.67	40.53	29.62		39.08	28.72	-	63.66	39.69	27.37	-	-	56.68	35.69	25.90	-	-	50.82	28.87	21.24	-	1	51.55	32.26	23.51	-	-	46.64	28.87	20.86	I	1	M _{ad} (in-k)	
3.767	1.325	0.670	0.341	0.155	4.556	1.597	0.806	4.030	1.416	0.715	0.364	3.679	1.295	0.655	0.334	0.151	3.329	1.174	0.594	0.303	0.137	3.066	1.084	0.549	0.280	0.127	3.154	1.114	0.564	0.288	0.130	2.891	1.023	0.519	0.265	0.120	Jx1000 (in ⁴)	
2.349	1.789	1.478	1.214	0.957	13.587	9.992	8.115	6.947	5.145	4.194	3.411	4.080	3.047	2.493	2.033	1.593	2.153	1.626	1.337	1.095	0.861	1.216	0.930	0.769	0.633	0.500	1.775	1.342	1.105	0.905	0.713	0.997	0.764	0.632	0.520	0.411	(in ⁶)	
-0.630	-0.661	-0.676	-0.687	-0.696	7 -2.427	-2.465	-2.483	-1.803	-1.842		-1.874	-1.378	-1.415		-1.446	-1.457		-1.032	-1.049	-1.062	-1.072		-0.768			-0.807	-1.037	-1.072	-1.090	-1.103	-1.114	-0.766	-0.801	-0.817	-0.830	-0.841	(in) ×	
0.423	0.440	3 0.448	7 0.454	3 0.460	7 1.451	5 1.471	3 1.481	3 1.100	2 1.119		4 1.136	3 0.859	5 0.878		5 0.894	0.901		2 0.655	9 0.663	2 0.670	2 0.677		3 0.497			7 0.519	7 0.656	2 0.675	0.684	3 0.691	4 0.697	3 0.497	0.514	7 0.523	0.530	1 0.536	(in m	
2.902	2.944	2.964	2.978	2.987	3.594	3.638	3.659		3.142		3.179	2.767	2.809		2.844	2.855	2.501	2.543	2.562	2.577	2.587		2.371			2.416	2.372	2.414	2.434			2.192	2.234		2.268	2.278	(in) R	ç
0.953	0.950	0.948	0.947	0.946	0.544	0.541	0.539		0.656		0.652	0.752	0.746		0.742	0.740	0.841	0.835	0.832	0.830	0.828		0.895			0.889	0.809	0.803	0.800	0.797	0.795		0.871		0.866	0.864	a	

TABLE 4—C-SHAPE PROPERTIES⁴ (Continued)

Т Т

									ABLE	1 C	SHAP		ABLE 4-C-SHAPE PROPER IIES (Continued)	s (Con	tinued)										
			GROSS			-	EFFECTIVE PROPERTIES ²	PROPE	ERTIES	² (F _y = 33 ksi)	3 ksi)			EFFECT	EFFECTIVE PROPER	PERTIES ²	(F _y =	50 ksi)			TORSIC	TORSIONAL PROPERTIES	OPERTI	ES	
MEMBER	(in ⁴)	(in ³)	(in)	ار (in ⁴)	(in)	اx (in ⁴)	(in ³)	M _a (in-k)	V _{ag} (Ib)	V _{anet} (Ib)	٦Ē	M _{ad} (in-k)	(in ⁴)	(in ³)	M _a (in-k)	V _{ag} (Ib)	V _{anet} (Ib)	Ĵŗ	M _{ad} (in-k)	Jx1000 (in ⁴)	(in ⁶)	ĵi,≻	(in) m	(in R	β
800S162-331	3.582	0.896	2.943	0.125	0.550	3.384	0.710	14.03	474	474	40.1	12.61		-	-	1	I	I	I	0.165	1.630	-0.936	0.607	3.137 (0.911
800S162-43	4.633	1.158	2.937	0.160	0.546	4.500	1.019	20.14	1051	1051	39.9	18.33	-	-	-	-	I	I	-	0.364	2.076	-0.926	0.601	3.128 (0.912
800S162-54	5.736	1.434	2.927	0.194	0.539		-	-		-	-	-	5.600	1.229	36.79	2091	2091	32.1	32.81	0.715	2.539	-0.914	0.594	3.113 (0.914
800S162-68	7.089	1.772	2.913	0.235	0.530		-						7.070	1.663	49.8	4221	3367	31.9	45.09	1.416	3.093	-0.899	0.586	3.094 (0.916
800S162-97	9.713	2.428	2.883	0.305	0.510		I				-	-	9.713	2.428	72.7	10885	5938	31.4	71.91	4.030	4.114	-0.866	0.568	3.053 (0.919
800S200-331	4.096	1.024	3.023	0.227	0.712	4.096	0.816	16.12	474	474	50.5	14.52		-		-	I		-	0.179	2.971	-1.288	0.817	3.363 (0.853
800S200-43	5.302	1.325	3.018	0.292	0.708	5.302	1.293	25.54	1051	1051	50.4	20.98		-		-	I	1	-	0.395	3.797	-1.277	0.811	3.353 (0.855
800S200-54	6.573	1.643	3.009	0.357	0.701		-	I	1	I	Ι	I	6.573	1.499	44.87	2091	2091	40.7	37.39	0.775	4.663	-1.265	0.804	3.338 (0.856
800S200-68	8.140	2.035	2.996	0.435	0.692	-	I		I	I	I	I	8.140	1.964	65.21	4221	3367	38.4	54.62	1.537	5.712	-1.248	0.796	3.319 (0.859
800S200-97	11.203	2.801	2.969	0.576	0.673		I	1	I	I	I	I	11.203	2.801	96.63	10885	5938	37.2	89.69	4.381	7.684	-1.214	0.777	3.278 (0.863
800S250-43	6.015	1.504	3.097	0.500	0.893	6.015	1.313	25.95	1051	1051	61.5	22.08	I	I	I	I	I	I	I	0.425	6.374	-1.675	1.043	3.632 (0.787
800S250-54	7.465	1.866	3.088	0.614	0.886	1	I	-	I	I	I	I	7.378	1.525	45.66	2091	2091	49.8	39.10	0.836		-1.661	-	3.617 (0.789
800S250-68	9.261	2.315	3.077	0.752	0.877	1	I	1	I	I	I	I	9.240	2.059	61.65	4221	3367	49.6	53.69	1.658	9.652	-1.644	1.027	3.597 (0.791
800S250-97	12.789	3.197	3.053	1.009	0.857	I	I	I	I	I	I	I	12.789	3.054	102.7	10885	5938	46.4	93.51	4.731	13.091	-1.607	1.008	3.555 (0.796
800S300-54	8.657	2.164	3.159	1.085	1.118		I		I	I	I	I	8.443	1.826	54.66	2091	2091	58.6	40.22	0.927	14.642	-2.244	1.372	4.033 (0.690
800S300-68	10.758	2.690	3.149	1.336	1.110	I	I	I	I	I	I	I	10.758	2.371	70.98	4221	3367	58.4	55.46	1.839	18.066	-2.226			0.692
800S300-97	14.913	3.728	3.127	1.817	1.092	I	I	I	I	I	I	I	14.913	3.576	107.05	10885	5938	58.1	89.89	5.257	24.677	-2.188	1.343	3.970 (0.696
1000S162-431	8.025	1.605	3.577	0.168	0.518	7.523	1.302	25.74	836	836	38.8	22.47	ł	I	-	I	I	I	I	0.425	3.430	-0.823			0.951
1000S162-54	9.950	1.990	3.565	0.204	0.511	I	I	I	I	I	I	I	9.391	1.572	47.07	1661	1661	31.3	40.37	0.836	4.198	-0.812	0.538	-	0.952
1000S162-68	12.325	2.465	3.550	0.246	0.502	I	I	I	I	I	I	I	11.978	2.154	64.51	3345	3345	31	56.37	1.658	5.121	-0.798	0.531	3.673 (0.953
1000S162-97	16.967	3.393	3.516	0.320	0.483	I	I	-	I	I	I	I	16.967	3.269	97.89	9864	7177	30.4	92.57	4.731	6.827	-0.768	0.514	3.631 (0.955
1000S200-431	9.085	1.817	3.676	0.309	0.677	8.602	1.470	29.05	836	836	49.3	26.15	I	I		I	I	I	I	0.456	6.236	-1.147	0.743	3.910 (0.914
1000S200-54	11.278	2.256	3.666	0.378	0.671	ł	I	I	I	I	I	I	10.769	1.705	51.05	1661	1661	39.8	46.64	0.896	7.665	-1.135	0.737	3.896 (0.915
1000S200-68	13.994	2.799	3.652	0.460	0.662	I	I	I	I	I	I	I	13.665	2.42	72.46	3345	3345	39.6	64.50	1.779	9.401	-1.120	0.729	3.876 (0.917
1000S200-97	19.336	3.867	3.622	0.609	0.643	1	I	I	I	I	I	I	19.336	3.741	112	9864	7177	39	104.74	5.082	12.679	-1.088	0.711	3.836 (0.920
1000S250-431	10.203	2.041	3.771	0.531	0.860	10.203	1.617	31.95	836	836	60.7	27.68	I	1		I	I	1	I	0.486	10.481	-1.518	0.965	4.155 (0.867
1000S250-54	12.677	2.535	3.762	0.653	0.854	I	I	I	I	I	I	I	12.660	1.879	56.26	1661	1661	49.1	49.20	0.957	12.922	-1.505	0.958	4.140 (0.868
1000S250-68	15.751	3.150	3.749	0.799	0.844	I	I	I	I	I	I	I	15.741	2.768	82.89	3345	3345	48.8	68.09	1.899	15.909	-1.488	0.950	4.121 (0.870
1000S250-97	21.827	4.365	3.722	1.072	0.825	ł	I	I	I	I	I	I	21.827	4.181	140.63	9864	7177	45.6	120.08	5.433	21.632	-1.454	0.932	4.080 (0.873
1000S300-54	14.587	2.917	3.856	1.161	1.088	I	I	I	I	I	I	I	14.360	2.262	67.74	1661	1661	58.1	50.69	1.047	23.644	-2.051	1.280	4.502 (0.792
1000S300-68	18.153	3.631	3.845	1.430	1.079	ł	I	-	I	I	I	I	18.153	3.153	94.41	3345	3345	57.8	70.10	2.081	29.210	-2.034	1.271	4.482 (0.794
1000S300-97	25.237	5.047	3.821	1.945	1.061	⁷	. "	I	α α	I	1	I	25.237	4.847	145.13	9864	7177	57.4	115.62	5.959	40.007	-1.998	1.253	4.441 (0.798
2				<u>4</u>	4	Эл			מ							-			-						

TABLE 4—C-SHAPE PROPERTIES⁴ (Continued)

For SI: 1 inch = 25.4 mm; 1 inch³ = 1.64x10⁴; 1 inch⁴ = 4.15x10⁵ mm⁴; 1 inch⁶ = 2.69x10⁸ mm⁶; 1 lb/lin ft = 14.5939 N/m; 1 kip-in = 112.99 N-m; 1 ksl = 6.89 Mpa; 1 lb = 4.45 N. 1000S300-97 25.237 5.047 3.821 1.945 1.061 I I I

								_	ADLE	Ĵ	UN AL	ד דאסד	Able 4-C-Share PROPER lies (Continued)	(Cont	inuea)										
		_	GROSS ³			п	EFFECTIVE PROPERTIES ² (Fy = 33 ksi)	/E PROF	PERTIE	S ² (F _y =	33 ksi)	_	EFFECTIVE PROF		PERTIES ²	3 ² (F _y =	(F _y = 50 ksi)			TORSI	FORSIONAL PROPERTIES	OPERT	IES	_
MEMBER	ا _x (in ⁴)	S _x (in ³)	R _x (in)	l _y (in ⁴)	Ry (in)	ا _x (in ⁴)	S _x (in ³)	Ma (in-k)	V _{ag} (Ib)	V _{anet} (Ib)	Lu (in)	M _{ad} (in-k)	ا _x (in ⁴)	S _x (in ³)	M _a (in-k)	V _{ag} (Ib)	V _{anet} (Ib)	(in)	M _{ad} (in-k)	Jx1000 (in ⁴)	С _% (in ⁶)	X₀ (in)	(in)	R₀ (in)	∞ 47
1200S162-541	15.730	2.622	4.190	0.212	0.486	I			I	I	I	I	14.298	1.914	57.31	1377	1377	30.5	46.77	0.957	6.340	-0.732	0.493	4.281	0.971
1200S162-68	19.518	3.253	4.173	0.255	0.477				-			1	18.390	2.645	79.19	2771	2771	30.2	66.08	1.899	7.739	-0.719	0.485	4.261	0.972
1200S162-97	26.966	4.494	4.137	0.331	0.459	-	-	I	I	-			26.735	4.091	122.49	8147	7411	29.5	111.39	5.433	10.331	-0.691	0.470	4.219	0.973
1200S200-541	17.662	2.944	4.306	0.393	0.643				-			I	16.334	2.073	62.07	1377	1377	39	54.76	1.017	11.550	-1.032	0.681	4.474	0.947
1200S200-68	21.947	3.658	4.291	0.479	0.634		-		I	-	-		20.864	2.963	88.71	2771	2771	38.7	76.57	2.020	14.176	-1.017	0.673	4.455	0.948
1200S200-97	30.417	5.069	4.258	0.635	0.615	-			-	-	-		30.175	4.66	139.51	8147	7411	38.1	126.88	5.783	19.150	-0.987	0.656	4.414	0.950
1200S250-541	19.681	3.280	4.416	0.683	0.823		-		I	-	-		18.433	2.149	64.34	1377	1377	48.3	58.41	1.078	19.505	-1.378	0.892	4.699	0.914
1200S250-68	24.484	4.081	4.402	0.836	0.813	1	I	-	-	I	I	1	23.575	3.007	90.04	2771	2771	48.1	81.58	2.141	24.034	-1.362	0.884	4.679	0.915
1200S250-97	34.016	5.669	4.373	1.121	0.794	1	I	I	-	I		I	33.835	5.037	150.82	8147	7411	47.5	135.18	6.134	32.734	-1.329	0.867	4.639	0.918
1200S300-541	22.479	3.747	4.533	1.221	1.057	I	I	-		-		I	22.278	2.702	80.9	1377	1377	57.4	60.65	1.168	35.310	-1.893	1.201	5.025	0.858
1200S300-68	28.003	4.667	4.520	1.504	1.048		-		I	-	-		28.003	3.734	111.79	2771	2771	57.2	84.79	2.322	43.658	-1.876	1.193	5.005	0.860
1200S300-97	39.017	6.503	4.494	2.046	1.029	I	1			-		I	39.017	6.256	187.31	8147	7411	56.7	141.05	6.660	59.901	-1.842	1.175	4.965	0.862
For SI: 1 inch = 25.4 mm; 1 inch ³ = 1.64x10 ⁴ ; 1 inch ⁴ = 4.15x10 ⁵ mm ⁴ ; 1 inch ⁶ = 2.69x10 ⁸ mm ⁶ ; 1 kip-in = 112.99 N-m; 1 ksl = 6.89 Mpa; 1 lb = 4.45	25.4 mm;	1 inch ³ :	= 1.64x1(0 ⁴ ; 1 inct	า ⁴ = 4.15	x10 ⁵ mm ⁴ ;	; 1 inch ⁶ =	= 2.69x1	0 ⁸ mm ⁶ ;	1 kip-ir	1 = 112.	99 N-m;	1 ksl = 6.8	9 Mpa; 1 I	lb = 4.45	N.									

TABLE 4—C-SHAPE PROPERTIES^{4,5} (Continued)

¹Web-height to thickness ratio, ht, exceeds 200. Web Stiffeners designed in accordance with AISI are required at support points and concentrated Loads. Holes/punchouts in the web are outside the scope of this report. ²The values are for members with punch-outs. ³Gross properties are based on the full, unreduced cross-section, away from web punchouts. ⁴Use the effective moment of inertia for deflection calculation. ⁵Allowable moment is lesser of M_a and M_{ad}. Distortional buckling is based on an assumed KΦ = 0.

SYMBOLS

 I_x = Strong axis moment of inertia S_x = Strong axis section modulus

 R_x = Strong axis radius of gyration l_y = Weak axis moment of inertia R_y = Weak axis radius of gyration

$$\begin{split} M_a &= Strong \text{ axis allowable bending moment} \\ V_{ag} &= Allowable shear of unpunched web section \\ V_{anet} &= Allowable shear of punched web section \\ L_u &= Unbraced length \end{split}$$

 $\begin{array}{ll} M_{ad} = \mbox{Allowable moment based on distortional buckling} & m = \mbox{Distant} \\ J = \mbox{St. Venant torsion constant} & \mbox{β} = \mbox{Torsion} \\ C_w = \mbox{Torsional warping constant} & \mbox{β} = \mbox{Torsion} \\ X_o = \mbox{Distance from shear center to the centroid along the principal X-axis} \end{array}$ β = Torsional flexural constant m = Distance from shear center to mid-plane of web R_o = Torsional radii of gyration

τ
تع
Q
Ð
_
N
약
Ņ
-

ESR-3016 | Most Widely Accepted and Trusted

350T250-97	350T250-68	350T250-54	350T250-43	350T200-97	350T200-68	350T200-54	350T200-43	350T200-33	350T150-97	350T150-68	350T150-54	350T150-43	350T150-33	350T125-97	350T125-68	350T125-54	350T125-43	350T125-33	250T250-97	250T250-68	250T250-54	250T250-43	250T200-97	250T200-68	250T200-54	250T200-43	250T200-33	250T150-97	250T150-68	250T150-54	250T150-43	250T150-33	250T125-97	250T125-68	250T125-54	250T125-43	250T125-33	MEMBER		
7 2.139	8 1.454	4 1.137	3 0.896	7 1.780	8 1.213	4 0.949	3 0.749	3 0.574	7 1.422	8 0.972	4 0.761	3 0.601	3 0.461	7 1.243	8 0.851	4 0.668	3 0.528	3 0.405	7 1.086	8 0.728	4 0.565		7 0.893			3 0.366						3 0.221	7 0.604	8 0.408		3 0.250	3 0.192	(in ⁴)		
9 1.109	4 0.776	7 0.615	6 0.490	0 0.923	3 0.647	9 0.513	9 0.409	4 0.315	2 0.738	2 0.518	1 0.412	1 0.328	1 0.253	3 0.645	1 0.454	8 0.361	8 0.288	5 0.222	6 0.761	8 0.530	5 0.419		3 0.626		6 0.346	6 0.275		1 0.491		8 0.273	9 0.217	1 0.167	4 0.423	8 0.297		0 0.188	2 0.145	(in ³)		
350T250-97 2.139 1.109 1.575 0.563 0.808 1.924 0.815 24.3	3 1.550	5 1.538	0 1.530		7 1.508	3 1.496	9 1.489	5 1.487	3 1.469	3 1.450	2 1.440	3 1.433	3 1.432	5 1.430	4 1.412	1 1.404	3 1.397	2 1.397	1 1.195	0 1.168	9 1.155		3 1.165	7 1.139	3 1.127	5 1.118	_				7 1.080		3 1.092	7 1.072		3 1.055	5 1.054	(in)	GROSS]
0.563	0.401	0.321	0.257		0.218	0.175	0.140	0.108	0.136	0.099	0.079		0.049		2 0.059	0.048	0.038	0.030	0.506	0.360	0.287		0.275	0.196	0.157	0.126			_	_	0.058	0.045	0.074	0.054		0.035	0.027	(in ⁴)	S ²	1
3 0.808	0.814	0.817	0.819		3 0.639	0.642	0.645	3 0.647) 0.455	0.462	0.465	0.467	0.469	0.366	0.372	3 0.375		0.379	ò 0.815	0.821	0.824		0.646		0.654	3 0.657	, 0.658				_		0.383	0.389		0.395	0.397	(in)		
		1	0.659	-	-	-	0.600	0.428			-	0.531	0.382				0.490	0.354	1	-	-	0.318			-	0.288	0.203			1	0.252	0.179		-		0.231	0.166	(in ⁴)	EFFEC	
. 1	-	1	0.268	-		-	0.257	0.181	-	-		0.243	0.171		-	1	0.233	0.165	1	-	I	0.169	1	-		0.163	0.112		1	1	0.154	0.107				0.147	0.103	S _x (in ³)	TIVE PRO	
I	1	1	\$ 5.29				5.09	3.57	1	1		4.80	3.39	-	1	1	4.61	3.27	1	1		3.34	1			3.21	2.22		1	1	3.03	2.11				2.91	\$ 2.03	Ma (in-k)	PERTIES (
I	-	-	1739				1739	1024	-	-		1739	1024		-	1	1739	1024	1	-	-	1356	1	-	-	1356	1024		1	1	1356	1024	-			1356	1024	V _{ag} (Ib)	EFFECTIVE PROPERTIES ($F_y = 33 \text{ ksi}$)	
1.924	1.168	0.846	-	1.708	1.054	0.770	1	1	1.422	0.919	0.679	1	1	1.243	0.839	0.626	1	1	0.972	0.576	0.410	1	0.856	0.517	0.371	-	1	0.701	0.445	0.325	1		0.604	0.402	0.297	-	-	(in ⁴)		ראטדבו
0.815	0.479	0.343		0.769	0.458	0.329	1	1	0.701	0.428	0.310	1	1	0.645	0.407	0.297	1	1	0.541	0.310	0.217	1	0.510	0.296	0.209	-	1	0.463	0.276	0.197	-		0.423	0.262	0.188	-	-	S _x (in ³)	EFFECTIVE PROPERTIES	KIIES
24.39	14.35	10.26		23.01	13.71	9.85	-	1	20.98	12.81	9.28	-	1	19.30	12.18	8.89	1	1	16.20	9.27	6.50	1	15.27	8.86	6.25	-	1	13.86	8.27	5.89	-		12.67	7.85	5.64	-	-	M _a (in-k)		1
6383	4536	3372	-	6383	4536	3372	1	1	6383	4536	3372	1		6383	4536	3372	1	1	4476	3199	2563	-	4476	3199	2563	-	1	4476	3199	2563	-		4476	3199	2563	-	-	V _{ag} (Ib)	(F _y = 50 ksi)	
6383 2.973	1.025	0.513	0.260	2.622	0.904	0.453	0.229	0.103	2.271	0.783	0.392	0.198	0.090	2.096	0.723	0.362	0.183	0.083	2.622	0.904	0.453	0.229	2.271	0.783	0.392	0.198	0.090	1.921	0.663	0.332	0.168	0.076	1.745	0.602	0.301	0.153	0.069	Jx1000 (in ⁴)		
1.413	0.961	0.752	0.593	0.765	0.522	0.409	0.323	0.249	0.346	0.238	0.187	0.148	0.114	0.209	0.144	0.114	0.090	0.070	0.696	0.466	0.361	0.283	0.374	0.251	0.195	0.153	0.118	0.168	0.114	0.089	0.070	0.054	0.101	0.069	0.054	0.042	0.033	(in [®])	TOR	1
-1.684	-1.703	-1.712	-1.719	-1.247	-1.264	-1.273	-1.280	-1.285	-0.831	-0.847	-0.855	-0.861	-0.866	-0.636	-0.650	-0.658	-0.663	-0.668	-1.834	-1.855	-1.865	-1.873	-1.376	-1.396	-1.405	-1.413	-1.418	-0.935	-0.953	-0.961	-0.968	-0.973	-0.724	-0.740	-0.749	-0.755	-0.760	(in X	SIONAL PE	
0.975	0.987	0.992	0.996	0.738	0.749	0.754	0.758	0.761	0.506	0.516	0.521	0.525	0.527	0.394	0.403	0.408	0.412	0.414	1.031	1.043	1.049	1.053	0.789	0.800	0.806	0.810	0.813	0.550	0.561	0.566	0.570	0.573	0.434	0.444	0.449	0.453	0.456	(in m	TORSIONAL PROPERTIES	
2.443	2.443	2.442	2.443	2.073	2.069	2.067	2.066	2.069	1.748	1.741	1.738	1.736	1.738	1.607	1.599	1.595	1.592	1.594	2.336	2.341	2.343	2.346	1.915	1.916	1.917	1.918	1.921	1.534	1.531	1.529	1.529	1.532	1.365	1.360	1.357	1.356	1.358	(in)	s	
0.525	0.514	0.509	0.505	0.638	0.626	0.621	0.616	0.614	0.774	0.763	0.758	0.754	0.752	0.844	0.835	0.830	0.826	0.824	0.384	0.372	0.366	0.362	0.484	0.469	0.462	0.457	0.455	0.629	0.613	0.605	0.599	0.596	0.719	0.704	0.696	0.690	0.687	β		

TABLE 5—TRACK PROPERTIES³

σ
تە
ge
Ð
-
ω
~
ç
N

49

	400T250-68 400T250-97	400T250-54	400T250-43	400T200-97	400T200-68	400T200-54	400T200-43	400T200-33	400T150-97	400T150-68	400T150-54	400T150-43	400T150-33	400T125-97	400T125-68	400T125-54	400T125-43	400T125-33	362T250-97	362T250-68	362T250-54	362T250-43	362T200-97	362T200-68	362T200-54	362T200-43	362T200-33	362T150-97	362T150-68	362T150-54	362T150-43	362T150-33	362T125-97	362T125-68	362T125-54	362T125-43	362T125-33	MEMBER			
	1.928	1.511	1.193	2.363	1.617	1.268	1.002	0.768	1.903	1.306	1.025	0.811	0.622	1.673	1.150	0.904	0.716	0.549	2.300	1.565	1.224	0.966	1.917	1.307	1.024	0.808	0.619	1.534	1.050	0.823	0.650	0.499	1.343	0.921	0.723	0.571	0.438	ا _x (in ⁴)			
3	0.907 1 296	0.720	0.573	1.085	0.761	0.604	0.482	0.371	0.874	0.615	0.489	0.390	0.300	0.768	0.541	0.431	0.344	0.265	1.155	0.808	0.641	0.510	0.963	0.675	0.536	0.427	0.328	0.771	0.542	0.431	0.343	0.264	0.675	0.475	0.378	0.302	0.232	S _x (in ³)			
4 4	1.735	1.723	1.715	1.707	1.685	1.675	1.668	1.666	1.638	1.619	1.610	1.604	1.603	1.594	1.577	1.569	1.563	1.563	1.621	1.597	1.585	1.577	1.575	1.552	1.541	1.534	1.532	1.512	1.492	1.483	1.476	1.475	1.471	1.454	1.445	1.439	1.438	R _x (in)	GROSS ⁴	3	
1 00	0.418	0.335	0.268	0.317	0.227	0.182	0.146	0.113	0.141	0.102	0.082	0.066	0.051	0.084	0.061	0.049	0.040	0.031	0.570	0.406	0.324	0.260	0.308	0.221	0.177	0.142	0.110	0.138	0.099	0.080	0.064	0.050	0.082	0.060	0.048	0.039	0.030	l _y (in ⁴)			
4	0.808	0.811	0.813	0.625	0.632	0.635	0.637	0.639	0.447	0.453	0.456	0.458	0.460	0.357	0.363	0.366	0.369	0.371	0.807	0.813	0.816	0.818	0.631	0.638	0.640	0.643	0.645	0.453	0.459	0.462	0.465	0.467	0.363	0.370	0.373	0.375	0.377	(in)			
6 0 0 0 0		I	0.888	1	I	1	0.811	0.581	I	I	I	0.719	0.519	1	1	-	0.666	0.484	1	1	I	0.713	I	-	-	0.649	0.464	-		-	0.574	0.414	-			0.531	0.384	l _x (in ⁴)	EFFECTIV		
6		I	0.324	1	I	I	0.311	0.220	I	I	I	0.293	0.208	I	1		0.282	0.201	I	I	1	0.281	1			0.270	0.190		-	-	0.255	0.180	-	-	-	0.245	0.174	S _x (in ³)	EFFECTIVE PROPERTIES (Fy = 33 ksi)		TABLE 5
		ł	6.40	-	1	-	6.14	4.34	1	1	1	5.80	4.12	1	-		5.57	3.97	-	-	-	5.56	-			5.34	3.76				5.04	3.56				4.84	3.44	M _a (in-k)	RTIES (Fy :		TABLE 5—TRACK PROPERTIES ³ (Continued)
		I	1739	1	I	1	1739	940	I	I	I	1739	940	I	1	I	1739	940	1	1	I	1739	I	I		1739	1024		-	-	1739	1024		-	-	1739	1024	V _{ag} (Ib)	= 33 ksi)		<pre></pre>
	1.559 2 546	1.137	I	2.268	1.412	1.037	1	1	1.903	1.237	0.918	I	I	1.673	1.134	0.849	-	1	2.069	1.259	0.914	I	1.839	1.138	0.832	I		1.534	0.993	0.735	-	-	1.343	0.907	0.678			ا _م (in ⁴)	EFFECTIV		RTIES ³ (0
0.000	0.574	0.413	1	0.911	0.549	0.397	1	1	0.832	0.513	0.374	I	I	0.768	0.488	0.359	-	1	0.851	0.502	0.360	I	0.803	0.480	0.345			0.733	0.449	0.325	-	-	0.675	0.427	0.312	-	-	S _x (in ³)	EFFECTIVE PROPERTIES (Fy		Continue
	17.19 28.80	12.38	I	27.28	16.42	11.88	I	I	24.92	15.35	11.19	I	I	23.00	14.62	10.74	-	1	25.49	15.04	10.77	I	24.06	14.37	10.34	I		21.94	13.43	9.74	-	-	20.20	12.78	9.34			Ma (in-k)	RTIES (Fy =		9
	5205	3372	1	7337	5205	3372	1	1	7337	5205	3372	I	I	7337	5205	3372	-	1	6622	4703	3372	I	6622	4703	3372	ł		6622	4703	3372	-	-	6622	4703	3372	-	-	V _{ag} (Ib)	= 50 ksi)		
	1.086	0.543	0.275	2.797	0.965	0.483	0.244	0.110	2.447	0.844	0.422	0.214	0.097	2.271	0.783	0.392	0.198	0.090	3.016	1.040	0.521	0.263	2.666	0.919	0.460	0.233	0.105	2.315	0.799	0.400	0.202	0.091	2.140	0.738	0.369	0.187	0.085	Jx1000 (in ⁴)			
	1.289	1.011	0.799	1.022	0.702	0.551	0.436	0.336	0.463	0.320	0.252	0.200	0.155	0.280	0.194	0.154	0.122	0.095	1.524	1.038	0.812	0.641	0.825	0.564	0.442	0.350	0.269	0.374	0.257	0.202	0.160	0.124	0.226	0.156	0.123	0.098	0.076	င _ဖ (inီ)	TORS		
	-1.637 -1 618	-1.646	-1.653	-1.192	-1.209	-1.217	-1.224	-1.229	-0.788	-0.804	-0.811	-0.817	-0.821	-0.600	-0.614	-0.621	-0.626	-0.630	-1.667	-1.686	-1.695	-1.702	-1.232	-1.250	-1.259	-1.265	-1.270	-0.820	-0.836	-0.844	-0.850	-0.854	-0.626	-0.641	-0.648	-0.654	-0.658	X₀ (in)	IONAL PR	1	
0.000	0.961 n 95n	0.966	0.970	0.715	0.725	0.730	0.734	0.737	0.487	0.496	0.501	0.504	0.507	0.377	0.386	0.390	0.394	0.396	0.969	0.980	0.986	0.990	0.732	0.743	0.748	0.752	0.754	0.501	0.511	0.516	0.519	0.522	0.390	0.399	0.404	0.407	0.409	m (in)	TORSIONAL PROPERTIES		
1.01	2.518	2.517	2.517	2.173	2.168	2.165	2.164	2.166	1.872	1.864	1.860	1.857	1.859	1.740	1.731	1.727	1.724	1.725	2.461	2.460	2.460	2.460	2.097	2.093	2.091	2.090	2.092	1.778	1.771	1.768	1.766	1.767	1.639	1.631	1.627	1.625	1.626	R₀ (in)			
0.000	0.578	0.572	0.569	0.699	0.689	0.684	0.680	0.678	0.823	0.814	0.810	0.807	0.805	0.881	0.874	0.871	0.868	0.867	0.541	0.530	0.525	0.521	0.655	0.643	0.637	0.633	0.631	0.787	0.777	0.772	0.768	0.766	0.854	0.846	0.841	0.838	0.836	β 4			

For SI: 1 inch = 25.4 mm; 1 inch³ = 1.64x10⁴; 1 inch⁴ = 4.15x10⁵ mm⁴; 1 inch⁶ = 2.69x10⁸ mm⁶; 1 lb/lin ft = 14.5939 N/m; 1 kip-in = 112.99 N-m; 1 ksl = 6.89 Mpa; 1 lb = 4.45 N.

ESR-3016 | Most Widely Accepted and Trusted

τ
ພັ
0
Φ
~
4
ç
N
-

ESR-3016
Most Widely
Accepted and
Trusted

TABLE 5—TRACK PROPERTIES³ (Continued)

MEMBER 800T125-331 800T125-43	l _x (in ⁴)	(in ³)	GROSS ² R _x (in)	ly (in ⁴)	(in)	EFFECTIV Ix (in ⁴)	$\begin{array}{c c} \text{EFFECTIVE PROPERTIES } (F_y = 33 \text{ ksi}) \\ I_x \\ (in^4) \\ (in^3) \\ (in^3) \\ (in-k) \\ (ib) \end{array}$	RTIES (Fy Ma (in-k)		EFFECTIV I _x (in ⁴)	EFFECTIVE PROPERTIES		(F _y = 50 ksi) V _{ag}) (lb)	Jx1000 (in ⁴)	TORS C _w (in ⁶)	TORSIONAL PROPERTIES	OPERTIES m (in)	(in) R₀	∞ 51
MEMBER 800T125-331 800T125-43	(in ⁴)	(in ³)	(in) R _x	(in ⁴)	(in) Ry	l _x (in ⁴)	S _x (in ³)	M _a (in-k)	V _{ag} (Ib)	ا _x (in ⁴)	S _x (in ³)	Ma (in-k)	(lb)	Jx1000 (in ⁴)	Cw (in ⁶)	(in) X	(in m	(in R	
800T125-331 800T125-43	2.895	2 1 1 2			Ī														
800T125-43		0.711	2.824	0.036	0.313	2.441	0.407	8.03	465	-	1		-	0.145	0.456	-0.439	0.294	2.875	0.977
	3.773	0.924	2.824	0.046	0.311	3.484	0.640	12.65	1030	-	-			0.321	0.589	-0.436	0.292	2.874	0.977
800T125-54	4.745	1.158	2.827	0.057	0.309					4.426	0.824	24.66	2039	0.634	0.735	-0.432	0.289	2.877	0.977
800T125-68	5.998	1.454	2.833	0.070	0.306	-	-	-	-	5.956	1.216	36.39	4087	1.267	0.920	-0.427	0.286	2.881	0.978
800T125-97	8.613	2.062	2.843	0.096	0.301	-	-	-	-	8.613	2.062	61.72	10885	3.674	1.296	-0.417	0.279	2.889	0.979
800T150-331	3.180	0.781	2.891	0.060	0.397	2.569	0.414	8.18	465				I	0.152	0.751	-0.588	0.388	2.977	0.961
800T150-43	4.144	1.015	2.891	0.077	0.395	3.689	0.655	12.95	1030	-	-	-	-	0.336	0.972	-0.584	0.386	2.976	0.961
800T150-54	5.214	1.272	2.896	0.096	0.393	1		-	1	4.692	0.844	25.27	2039	0.664	1.215	-0.580	0.383	2.979	0.962
800T150-68	6.594	1.599	2.902	0.119	0.390			-		6.361	1.255	37.58	4087	1.327	1.526	-0.575	0.379	2.984	0.963
800T150-97	9.479	2.269	2.914	0.165	0.384		-	-		9.479	2.192	65.62	10885	3.849	2.162	-0.564	0.372	2.993	0.965
800T200-331	3.749	0.921	3.005	0.135	0.571	2.788	0.424	8.37	465		1		-	0.166	1.638	-0.917	0.589	3.194	0.918
800T200-43	4.887	1.197	3.006	0.175	0.569	4.043	0.676	13.35	1030		I		-	0.367	2.124	-0.913	0.587	3.193	0.918
800T200-54	6.152	1.501	3.011	0.218	0.567	1		-	1	5.149	0.871	26.09	2039	0.725	2.664	-0.908	0.584	3.196	0.919
800T200-68	7.786	1.888	3.019	0.272	0.564			-	-	7.051	1.310	39.22	4087	1.448	3.357	-0.902	0.580	3.201	0.921
800T200-97	11.212	2.683	3.034	0.379	0.558	1		-	I	10.833	2.347	70.27	10885	4.200	4.792	-0.889	0.571	3.210	0.923
800T250-43	5.629	1.380	3.100	0.326	0.746	4.655	0.739	14.60	1030		I		I	0.397	3.877	-1.274	0.801	3.433	0.862
800T250-54	7.090	1.730	3.106	0.407	0.744			-	-	5.902	0.959	28.71	2039	0.785	4.870	-1.268	0.798	3.436	0.864
800T250-68	8.978	2.177	3.114	0.509	0.741	1		-	I	7.756	1.560	46.72	4087	1.569	6.151	-1.261	0.793	3.441	0.866
800T250-97	12.944	3.098	3.132	0.713	0.735	I		-	I	11.872	2.487	74.47	10885	4.550	8.818	-1.247	0.784	3.450	0.869
1000T125-431	6.630	1.305	3.431	0.047	0.290	5.886	0.819	16.19	822	I	I	I	I	0.382	0.973	-0.379	0.259	3.464	0.988
1000T125-54	8.333	1.634	3.434	0.059	0.288	1		-	1	7.479	1.055	31.59	1628	0.755	1.212	-0.376	0.256	3.466	0.988
1000T125-68	10.522	2.053	3.438	0.073	0.286	I	-	I	I	10.155	1.575	47.15	3261	1.508	1.515	-0.372	0.253	3.470	0.989
1000T125-97	15.077	2.912	3.447	0.100	0.280			I	I	15.077	2.753	82.42	9507	4.375	2.123	-0.363	0.247	3.477	0.989
1000T150-431	7.207	1.419	3.507	0.080	0.370	6.195	0.837	16.54	822	1	I	1	-	0.397	1.612	-0.513	0.345	3.564	0.979
1000T150-54	9.061	1.777	3.511	0.100	0.368	1		-	1	7.880	1.079	32.29	1628	0.785	2.013	-0.509	0.342	3.567	0.980
1000T150-68	11.445	2.233	3.516	0.124	0.366			-	-	10.774	1.621	48.53	3261	1.569	2.522	-0.505	0.339	3.571	0.980
1000T150-97	16.413	3.170	3.526	0.171	0.360	1			1	16.413	2.902	86.90	9507	4.550	3.557	-0.495	0.332	3.579	0.981
1000T200-431	8.361	1.646	3.640	0.183	0.539	6.722	0.861	17.01	822		I		I	0.428	3.540	-0.813	0.534	3.769	0.953
1000T200-54	10.516	2.062	3.645	0.228	0.537	1		-	I	8.560	1.111	33.26	1628	0.845	4.434	-0.809	0.531	3.772	0.954
1000T200-68	13.292	2.594	3.651	0.284	0.534	I	-	1	I	11.820	1.684	50.42	3261	1.690	5.576	-0.803	0.527	3.776	0.955
1000T200-97	19.087	3.686	3.664	0.397	0.528	1		-	I	18.583	3.081	92.25	9507	4.901	7.924	-0.791	0.519	3.786	0.956
1000T250-431	9.515	1.873	3.751	0.344	0.713	7.283	0.876	17.32	822	1	1	1	1	0.458	6.477	-1.147	0.737	3.987	0.917
1000T250-54	11.972	2.348	3.757	0.429	0.711	1		-	1	9.309	1.132	33.89	1628	0.906	8.125	-1.142	0.734	3.990	0.918
1000T250-68	15.138	2.954	3.764	0.536	0.708	1	-	I	1	12.867	1.726	51.68	3261	1.810	10.240	-1.135	0.730	3.995	0.919
1000T250-97	21 7AN													מייני ה			101	1007	0001

TABLE 5—TRACK PROPERTIES³ (Continued)

For SI: 1 inch = 25.4 mm; 1 inch³ = 1.64x10⁴; 1 inch⁴ = 4.15x10⁵ mm⁴; 1 inch⁶ = 2.69x10⁸ mm⁶; 1 lb/lin ft = 14.5939 N/m; 1 kip-in = 112.99 N-m; 1 ksl = 6.89 Mpa; 1 lb = 4.45 N.

											Continue	ju,							
			GROSS ²			EFFECTIVE PROPERTIES (Fy = 33 ksi)	'E PROPEI	RTIES (Fy:	= 33 ksi)	EFFECTIV	EFFECTIVE PROPERTIES (I	<"	= 50 ksi)		TORSI	FORSIONAL PROPERTIES	OPERTIES		
MEMBER	l _x (in ⁴)	S _x (in ³)	(in) Rx	اب (in ⁴)	(in) Ry	(in ⁴)	S _x (in ³)	Ma (in-k)	V _{ag} (Ib)	l _x (in ⁴)	S _x (in ³)	M _a (in-k)	V _{ag} (Ib)	Jx1000 (in ⁴)	င (in ိ	(in) €	(ii) m	(in) R	ß
1200T125-541	13.335	2.186	4.033	0.060	0.271	1	1	I	I	11.460	1.286	38.51	1354	0.876	1.820	-0.333	0.230	4.055	0.993
1200T125-68	16.826	2.747	4.036	0.074	0.268	-	-	-	-	15.686	1.934	57.90	2713	1.750	2.270	-0.329	0.227	4.059	0.993
1200T125-97	24.078	3.897	4.044	0.102	0.263			-		23.751	3.442	103.06	7902	5.076	3.171	-0.322	0.222	4.065	0.994
1200T150-541	14.378	2.357	4.117	0.103	0.348	-	1	-	1	12.020	1.313	39.31	1354	0.906	3.033	-0.454	0.310	4.156	0.988
1200T150-68	18.148	2.963	4.121	0.127	0.345			-		16.566	1.987	59.48	2713	1.810	3.795	-0.450	0.307	4.160	0.988
1200T150-97	25.987	4.206	4.130	0.176	0.340			-		25.719	3.616	108.27	7902	5.252	5.335	-0.441	0.301	4.168	0.989
1200T200-541	16.464	2.699	4.265	0.236	0.510			-		12.962	1.350	40.41	1354	0.966	6.714	-0.730	0.487	4.357	0.972
1200T200-68	20.791	3.395	4.271	0.294	0.508			-		18.026	2.058	61.62	2713	1.931	8.431	-0.725	0.483	4.362	0.972
1200T200-97	29.805	4.824	4.283	0.410	0.502			-		28.959	3.819	114.35	7902	5.602	11.945	-0.714	0.476	4.371	0.973
1200T250-541	18.550	3.041	4.392	0.445	0.681		-	-		14.092	1.374	41.14	1354	1.027	12.339	-1.039	0.680	4.565	0.948
1200T250-68	23.435	3.826	4.399	0.556	0.678		-	-		19.608	2.106	63.04	2713	2.052	15.529	-1.033	0.676	4.569	0.949
1200T250-97	33.623	5.442	4.413	0.780	0.672	-	-	-		31.596	3.954	118.37	7902	5.953	22.101	-1.021	0.668	4.579	0.950
For SI: 1 inch = 25.4 mm; 1 inch ³ = 1.64×10 ⁴ ; 1 inch ⁴ = 4.15×10 ⁵ mm ⁴ ; 1 inch ⁶ = 2.69×10 ⁸ mm ⁶ ; 1 lb/lin ft = 14.5939 N/m; 1 kip-in = 112.99 N-m; 1 ksl =	4 mm; 1 inch	ו ³ = 1.64x1	0 ⁴ ; 1 inch ⁴ =	= 4.15x10 ⁵ r	nm⁴; 1 inch	ı ⁶ = 2.69x1(0 ⁸ mm ⁶ ; 1 lk	o/lin ft = 14	.5939 N/m	; 1 kip-in =	112.99 N-n	n; 1 ksl = 6.	6.89 Mpa; 1 lb = 4.45 N.	b = 4.45 N.					

TABLE 5—TRACK PROPERTIES³ (Continued)

¹Web-height to thickness ratio, h/t, exceeds 200. Web Stiffeners designed in accordance with AISI are required at support points and concentrated Loads. ³Gross properties are based on the full, unreduced cross-section. ³Use the effective moment of inertia for deflection calculation.

SYMBOLS

 I_x = Strong axis moment of inertia S_x = Strong axis section modulus R_x = Strong axis radius of gyration I_y = Weak axis moment of inertia

 R_y = Weak axis radius of gyration M_a = Strong axis allowable bending moment V_{ag} = Allowable shear of unpunched web section V_{anet} = Allowable shear of punched web section

 $\begin{array}{ll} J=St. \mbox{ Venant torsion constant } R_o=Torsio \\ C_w=Torsional warping constant \\ X_o=Distance from shear center to the centroid along the principal X-axis \\ m=Distance from shear center to mid-plane of web \\ \end{array}$ R_o = Torsional radii of gyration β = Torsional flexural constant

CONDITION 1 (E1F) CONDITION 2 (11F) Bearing Length (in) See Note 1 33
$ \ \ \ \ \ \ \ \ \ \ \ \ \$
$ \ \ \ \ \ \ \ \ \ \ \ \ \$
$ \ \ \ \ \ \ \ \ \ \ \ \ \$
$ \ $
$ \ \ \ \ \ \ \ \ \ \ \ \ \$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
Fy (ksi) CONDITION 1 (E1F) CONDITION 2 (I1F) Image: space
CONDITION 1 (E1F) CONDITION 2 (I1F) USE CONDITION 2 (I1F) Bearing Length (in) Bearing Length (in) Bearing Length (in) Image: Colspan="6">Condition (in) Image: Colspan="6">See Note 1 See Note 1
Fy (ksi) CONDITION 1 (E1F) CONDITION 2 (I1F) Image: Conditi (I1F) Image: Condit (I1F) Imag
Fy CONDITION 1 (E1F) CONDITION 2 (I1F) (ksi) 1 3.5 4 6 1 3 3 3 3 3 3 3 3 3
Fy CONDITION 1 (E1F) CONDITION 2 (I1F) (Ksi) 4 3 6 4 3 6 4
Fy. Bearing Length (in) Bearing Length (in)
CONDITION 1 (E1F) CONDITION 2 (11F)

TABLE 6—ALLOWABLE CONCENTRATED LOADS AND END REACTIONS FOR C-SHAPES BASED ON WEB CRIPPLING²

For **SI:** 1 inch = 25.4 mm, 1 pound = 4.4482 N 550 S _-97 50 1766 2571

¹ Bearing length to web height ration, N/h, exceeds 2. Web stiffeners are required. ² Values are for members fastened to supports.

1200 S	1200 S	1000 S	1000 S	1000 S	S 008	S 008	S 008	S 008	S 009	600 S	_S 009	5 009	600 S		DESIC	0	
S97	S68	S97	S68	S54	S97	S68	S64	S43	S97	S68	S54	S43	S33				
7 50	3 50	 7 50	3 50	1 50	50	50	50	33	50	50	50	33	33		N (kei)	n	
1618	828	1657	854	553	1702	882	575	247	1752	914	599	259	153	1			
2355	1237	2412	1275	840	2477	1318	872	381	2551	1366	606	400	240	3.5	Bearin	COND	
2464	1298	2525	1338	882	2592	1382	917	401	2669	1433	956	420	253	4	Bearing Length (in)	CONDITION 1 ³ (E1F)	
2844	1509	2914	1555	1031	2992	1607	1070	470	3081	1666	1116	493	297	6	-	<u>"</u>	
3764	1913	3805	1938	1251	3850	1966	1272	542	3902	1998	1295	553	313	1			
4764	2485	4815	2518	1655	4873	2555	1682	730	4939	2596	1713	745	430	3.5	Bearin	COND	
4912	2570	4965	2604	1715	5025	2642	1743	757	5093	2685	1775	773	447	4	Bearing Length (in)	CONDITION 2 ³ (I1F)	
5428	2866	5487	2904	1923	5553	2946	1955	854	5628	2994	1991	872	507	6	-	<u>ت</u>	
1348	551	1476	629	346	 1618	716	409	150	1781	816	482	185	93	1			
1668	669	1827	799	447	2003	910	529	197	2205	1036	623	243	125	3.5	Bearir	COND	
1716	721	1879	824	462	2060	939	547	204	2268	1069	644	252	130	4	Bearing Length (in)	CONDITION 3 ³ (E2F)	
1882	798	2060	912	514	2259	1038	608	228	2487	1183	716	282	146	6	-	Ţ	
4350	2001	4545	2119	1275	4761	2250	1370	548	5010	2399	1478	600	329	1			0 100
5109	2402	5338	2544	1554	5593	2701	1670	678	5885	2881	1802	743	416	3.5	Bearin	COND	(1111111111111111111111111111111111111
5222	2462	5456	2607	1595	5716	2768	1714	869	6014	2952	1850	764	429	4	Bearing Length (in)	CONDITION 4 ³ (I2F)	
5614	2669	 5866	2826	1740	6145	3001	1869	765	 6466	3201	2017	838	473	6	U)	ت	

TABLE 6— ALLOWABLE CONCENTRATED LOADS AND END REACTIONS FOR C-SHAPES BASED ON WEB CRIPPLING² (Continued)

For **SI:** 1 inch = 25.4 mm, 1 pound = 4.4482 N

¹ Bearing length to web height ratio, N/h, exceeds 2. Web stiffeners are required.
 ² Values are for members fastened to supports.
 ³ Allowable web conditions are as follows (See Figure 2 for illustration):

Condition 1 – End One Flange Loading (E1F) Condition 2 – Interior One Flange Loading (I1F)

Condition 3 – End Two Flange Loading (E2F) Condition 4 – Interior Two Flange Loading (I2F)

TABLE 7—STRUCTURAL PROPERTIES OF FURRING CHANNELS^{1,2}

	г	DESIGN		G	ROSS PR	EFFECTIVE PROPERTIES					
SECTION	г _у (ksi)	THICKNESS (in)	Area (in ²)	Weight (lb/ft)	lx (in⁴)	Rx (in)	ly (in⁴)	Ry (in)	lx (in⁴)	Sx (in³)	Ma (ft-lb)
087F125-18	33	0.0188	0.070	0.239	0.009	0.356	0.0422	0.774	0.0086	0.0160	26.41
087F125-27	33	0.0283	0.105	0.357	0.013	0.353	0.0628	0.774	0.0131	0.0272	44.78
087F125-30	33	0.0312	0.115	0.392	0.014	0.352	0.0691	0.774	0.0143	0.0307	50.47
087F125-33	33	0.0346	0.127	0.433	0.016	0.351	0.0763	0.774	0.0157	0.0337	55.43

For SI: 1 inch = 25.4 mm; 1 inch² = 645 mm²; 1 inch³ = 1.64×10^4 ; 1 inch⁴ = 4.15×10^5 mm⁴; 1 inch⁶ = 2.69×10^8 mm⁶; 1 lb/lin ft = 14.5939 N/m; 1 kip-in = 112.99 N-m; 1 ksl = 6.89 Mpa; 1 lb = 4.45 N.

¹ For deflection calculations, use effective I_x.

 2 Effective properties are given as the minimum value for positive or negative bending.

<u>SYMBOLS</u>

I_x = Strong axis moment of inertia	I _v = Weak axis moment of inertia
R _x = Strong axis radius of gyration	R _y = Weak axis radius of gyration

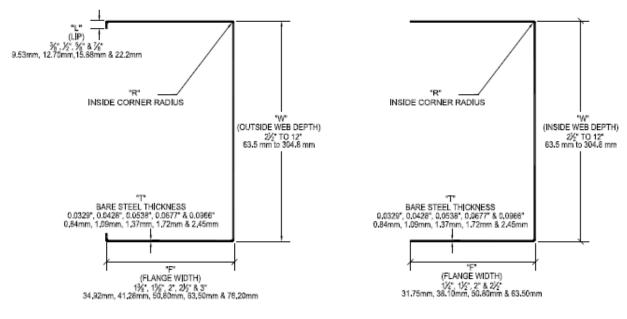
 S_x = Strong axis section modulus M_a = Strong axis allowable bending moment

	F	DESIGN			GRO	SS			EFF	ECTIVE F	PROPERT	IES
SECTION	(ksi)	THICKNESS	Area (in²)	Weight (lb/ft)	l _x (in⁴)	R _x (in)	l _y (in ⁴)	R _y (in)	l _x (in⁴)	S _x (in ³)	Ma (in-k)	Va (Ib)
75U050-54	33	0.0566	0.087	0.30	0.007	0.288	0.002	0.155	0.007	0.019	0.45	315
150U050-54	33	0.0566	0.129	0.44	0.039	0.547	0.003	0.144	0.039	0.052	1.22	840
200U050-54	33	0.0566	0.157	0.54	0.079	0.709	0.003	0.136	0.079	0.079	1.87	1190

For SI: 1 inch = 25.4 mm; 1 inch² = 645 mm^2 ; 1 inch³ = 1.64×10^4 ; 1 inch⁴ = $4.15 \times 10^5 \text{ mm}^4$; 1 inch⁶ = $2.69 \times 10^8 \text{ mm}^6$; 1 lb/lin ft = 14.5939 N/m; 1 kip-in = 112.99 N-m; 1 ksl = 6.89 Mpa; 1 lb = 4.45 N.

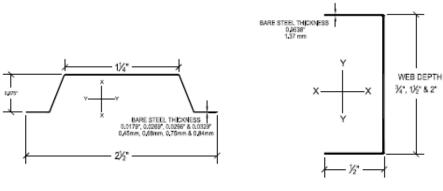
¹ For deflection calculations, use effective I_x .

<u>SYMBOLS</u>


 I_x = Strong axis moment of inertia R_x = Strong axis radius of gyration l_y = Weak axis moment of inertia R_y = Weak axis radius of gyration S_x = Strong axis section modulus $~V_a$ = Allowable shear of web section M_a = Strong axis allowable bending moment

IRC MEMBER		EQUIVALEN	IT CEMCO MEMBER DE	ESIGNATION	
DESIGNATION	t = 33	t = 43	t = 54 ¹	t = 68 ¹	t=97 ¹
350S162-t	350S162-33	350S162-43	350S162-54	350S162-68	
3005102-1	350S200-33	350S200-43	350S200-54	350S200-68	
550S162-t	550S162-33	550S162-43	550S162-54	550S162-68	550S162-97
5505 102-L	550S200-33	550S200-43	550S200-54	550S200-68	550S200-97
800S162-t	800S162-33	800S162-43	800S162-54	800S162-68	800S162-97
0003102-0	800S200-33	800S200-43	800S200-54	800S200-68	800S200-97
1000S162-t		1000S162-43	1000S162-54	1000S162-68	1000S162-97
10005162-0		1000S200-43	1000S200-54	1000S200-68	1000S200-97
1200S162-t			1200S162-54	1200S162-68	1200S162-97
12003102-1			1200S200-54	1200S200-68	1200S200-97

¹These members are applicable to the 2015 IRC and 2012 IRC and are not applicable to the 2009 IRC. ²Framing members must have a minimum lip size of 0.5 inch (12.7 mm).


TABLE 10—MANUFACTURING LOCATIONS

CEMCO	Marino\WARE	Telling Industries
CEMCO – City of Industry City of Industry, CA 91746	Marino\WARE – South Plainfield South Plainfield, NJ 07080	Telling Industries, LLC Cambridge, OH 43725
CEMCO – Pittsburg Pittsburg, CA 94565	Marino\WARE – Griffin Griffin, GA 30223	Telling Industries, LLC Osceola, AR 72370
CEMCO – Denver Denver, CO 80204	Marino\WARE – East Chicago East Chicago, IN 46312	
CEMCO – Fort Worth Fort Worth, TX 76140	Marino\WARE – Pasadena Pasadena, TX 77507	

STRUCTURAL TRACK

FURRING HAT CHANNEL

U-CHANNEL

FIGURE 1—SECTION PROFILES

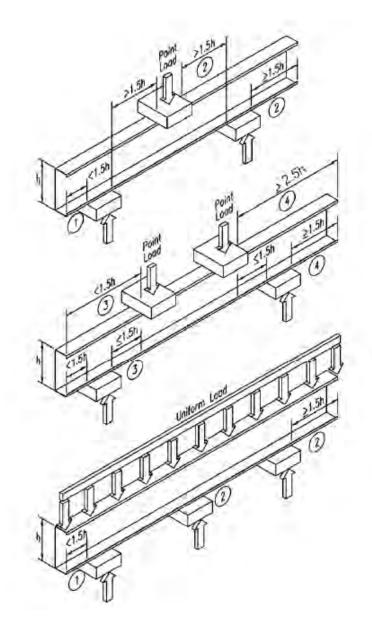


FIGURE 2

WALL AND FLOOR SHEATHING SPECIFICATIONS

Originally Issued: 01/26/2010

Revised: 10/03/2016

Valid Through: 02/28/2017

EVALUATION SUBJECT: SURE-BOARD® SERIES 200, 200W, AND 200B STRUCTURAL PANELS INSTALLED ON COLD-FORMED STEEL OR WOOD FRAMED SHEAR WALLS

REPORT HOLDER:

Intermat 2045 Placentia Avenue Costa Mesa, California 92627 <u>www.sureboard.com</u> <u>support@sureboard.com</u>

CSI Division: 05-METALS CSI Section: 05160-Metal Framing Systems

1.0 SCOPE OF EVALUATION

1.1 Compliance to the following codes & regulations:

- 2015, 2012, and 2009 International Building Code[®] (IBC)
- 2015, 2012, and 2009 International Residential Code[®] (IRC)
- Attached Supplement- 2016 and 2013 California Building Code[®] (CBC)

1.2 Evaluated in accordance with:

• EC 003-2016

1.3 Properties assessed:

• Structural

2.0 PRODUCT USE

2.1 General

2.1.1 Sure-Board[®] Series 200, 200W, and 200B Structural Panels are panels attached to cold-formed steel (CFS) or wood framing for shear wall applications within a Seismic Force-Resisting System conforming to items A.13 in Table 12.2-1 of ASCE 7-05, and A.15 and A.16 in Table 12.2-1 of ASCE 7-10; or a Wind Force Resisting System.

2.1.2 The structural panels are alternatives to cold-formed steel or wood stud light-frame shear wall systems described in Section 2211.6 of the 2015 and 2012 International Building Code (IBC), Section 2210.6 of the 2009 International Building Code (IBC), Section 2305 of the International Building Code (IBC), and Section 12.2 of ASCE/SEI 7. The structural panels may also be used where an engineered design is submitted in accordance with Section R301.1.3 of the International Residential Code (IRC).

3.0 PRODUCT DESCRIPTION

3.1 Sure-Board[®] Series 200, 200W, and 200B Series Structural Panels

3.1.1 Sure-Board[®] Series 200 Panels: Sure-Board[®] Series 200 Structural Panels consist of ¹/₂- to ³/₄-inch thick (12.7 to 19.0 mm), tapered or square-edged, non-rated or Type-X fire-resistance-rated gypsum wallboard complying with ASTM C1396, C1278 or C1177, or cement board complying with ASTM C1325 factory-laminated with water-soluble adhesive to sheet steel. The sheet steel is No. 22 gage (0.027 inch/0.686 mm) minimum base-metal thickness complying with ASTM A653 CS, Grade 33 minimum, and is provided with a G40 hot-dipped galvanized coating conforming to ASTM A924. These panels are available in widths of 48 inches (1219 mm) and standard lengths of 8, 9, 10 and 12 feet (2438, 2743, 3048 and 3658 mm).

3.1.2 Sure-Board® Series 200W Panels: Sure-Board® Series 200W Structural Panels consist of minimum 1/8-inch (3.2 mm) thick, square-edge Medium Density Fiberboard (MDF) panels, or equal, complying with ANSI A208.2, factory-laminated with a water-soluble adhesive to sheet steel. The sheet steel is No. 22 gage (0.027 inch/0.686 mm) minimum base-metal thickness complying with ASTM A653 CS, Grade 33 minimum, and is provided with a G40 hot-dipped galvanized coating conforming to ASTM A924. These panels are available in widths of 48 inches (1219 mm) and standard lengths of 8, 9, 10 and 12 feet (2438, 2743, 3048 and 3658 mm) and the standard lengths may be pre-cut by request.

3.1.3 Sure-Board® Series 200B Panels: Sure-Board® Series 200B Structural Panels consist of ¹/₂- to ³/₄-inch thick (12.7 to 19.0 mm), tapered or square-edged, non-rated or Type X fire-resistance-rated gypsum wallboard complying with ASTM C1396, C1278 or C1177, or cement board complying with ASTM C1396, C1278, factory-laminated with water-soluble adhesive to sheet steel. The sheet steel is No. 14 gage (0.071 inch/1.81 mm) minimum base-metal thickness complying with ASTM A653 CS, Grade 50 minimum, and is provided with a G60 hot-dipped galvanized coating conforming to ASTM A924. These panels are available in widths of 48 inches (1219 mm) and standard lengths of 8, 9, 10 and 12 feet (2438, 2743, 3048 and 3658 mm).

3.2 Fasteners

3.2.1 Sure-Board[®] Series 200 Panels Attached to Steel Framing (Tables 1 and 1A): The fasteners used for attaching the Sure-Board[®] Series 200 Structural Panels to

Copyright © 2016 by International Association of Plumbing and Mechanical Officials. All rights reserved. Printed in the United States. Ph: 1-877-4IESRPT • Fax: 909.472.4171 web: www.uniform-es.org • 4755 East Philadelphia Street, Ontario, California 91761-2816 – USA

Originally Issued: 01/26/2010

Revised: 10/03/2016

Valid Through: 02/28/2017

steel framing are self-drilling/self-tapping No. 2 pilot point bugle head screws. The No. 8 screws have a minimum diameter of 0.138 inch (3.5 mm), with a minimum 0.3145 inch (8.0 mm) head diameter and 1.25 inch (31.7 mm) minimum length, and shall comply with SAE J78 and ASTM C954.

3.2.2 Sure-Board[®] Series 200W Panels Attached to Steel Framing (Tables 2 and 3): The fasteners used for attaching the Sure-Board[®] Series 200W Structural Panels to steel framing are No. 10 - 0.19 inch (4.83 mm) minimum diameter, with a minimum 0.3145 inch (8.0 mm) diameter pan head and 0.75 inch (19.0 mm) minimum length screws, complying with SAE J78 and ASTM C954.

3.2.3 Sure-Board® Series 200B Panels Attached to Steel Framing (Table 1): The fasteners used for attaching the Sure-Board® Series 200B Structural Panels to steel framing are minimum No. 8 self-drilling screws with a minimum 0.138 inch (3.5 mm) diameter and minimum 1.25 inch (31.7 mm) length. The screw head is No. 2 pilot point bugle head having a minimum 0.3145 inch (8.0 mm) head diameter. The screws shall comply with SAE J78 and ASTM C954. Larger screw diameter is acceptable to use and maintain capacities listed in this report.

3.2.4 Sure-Board[®] Series 200 and 200W Panels Attached to Steel Framing (Table 6): Other fasteners for attaching Sure-Board[®] Series 200 and 200W Structural Panels to steel framing include power-driven fasteners (pneumatic pins) for specific assemblies listed in Table 6 of this report. The minimum $1\frac{1}{4}$ inch (31.8 mm) long by 0.100 inch (2.54 mm) diameter knurled shank pneumatic nails with a minimum 5/16 inch (7.94 mm) diameter head are produced by Aerosmith Inc. and shall comply with an evaluation report issued by an approved and accredited evaluation agency.

3.2.5 Sure-Board® Series 200W Panels Attached to Wood Framing (Table 4): The fasteners used for attaching the Sure-Board® Series 200W Structural Panels to wood framing are smooth shank 10d plywood nails measuring minimum 2.25 inches (57.2 mm) long by minimum 0.148 inch (3.8 mm) shank diameter.

3.2.6 Sure-Board[®] Series 200 Panels Attached to Wood Framing (Table 5): The fasteners used for attaching the Sure-Board[®] Series 200 Structural Panels to wood framing are No. 8 by minimum 2-inch (50.8 mm) long drywall wood screws.

3.3 Steel Framing

3.3.1 In this report, for steel framing members, the following gage reference numbers, and corresponding minimum design base-metal thicknesses shall apply:

No. 14 gage: 0.071 inch (1.81 mm)

No. 18 gage: 0.043 inch (1.09 mm) No. 20 gage: 0.033 inch (0.84 mm)

3.3.2 Steel studs for shear walls are C-shaped, with a minimum depth of $3\frac{1}{2}$ inches (89 mm) and a minimum flange width of $1\frac{5}{8}$ inches (41 mm), with a $\frac{3}{8}$ -inch (9.5 mm) return lip for C-shaped stud. Tracks shall be a minimum of $3\frac{1}{2}$ inches (89 mm) wide, with minimum $1\frac{1}{4}$ -inch (31.7 mm) high flanges.

3.3.3 No. 14 and No. 16 gage steel members shall comply with ASTM A653 CS Grade 50, with minimum yield and tensile strengths of 50 ksi (340 MPa) and 65 ksi (450 MPa), respectively. The No. 18 and No. 20 gage members shall comply with ASTM A653 CS Grade 33, with minimum yield and tensile strengths of 33 ksi (230 MPa) and 45 ksi (310 MPa), respectively. Structural design shall be performed by the design professional in accordance with Section 2211.6 of the 2015 and 2012 IBC, Section 2210.6 of the 2009 IBC, Section R301.1.3 of the IRC, AISI S100, and ASCE/SEI 7. Collector posts at each end of shear wall shall be minimum double stud and same gage as framing material, except as described in footnote 10 to Table 1 of this report. Actual collectors may be increased to larger or heavier gage element, as determined by the design professional.

3.4 Wood Framing

3.4.1 Minimum framing members are Stud or Construction grade Douglas Fir (D.F.) or equal with a minimum Specific Gravity (S.G.) of 0.49, conforming to Chapter 23 of the IBC and IRC. Minimum framing member size for shear walls shall be nominal 2 by 4 studs.

3.4.2 End Posts for shear walls shall be minimum 4 by 4 No. 1 grade Douglas Fir or equal. Sill plates for shear walls shall be minimum 2 by 4 Standard grade or better Douglas Fir or equal.

3.4.3 Sill Plates for two-sided shear walls shall be minimum 2 by 4 Timberstrand[®], 3 by 4 pressure-preservative treated Douglas Fir or equal, and shall be in compliance in a current evaluation report from an approved and accredited evaluation agency.

3.4.4 Fire-retardant-Treated wood framing material has been tested with Sure-Board[®] panels. All stated load capacities in Tables 4 and 5 of this report shall remain as stated in this report.

4.0 DESIGN AND INSTALLATION

4.1 Shear Wall Design

4.1.1 Seismic loadings shall be determined in accordance with IBC Section 1613 and ASCE/SEI 7 subject to limitations set forth for Seismic Force-Resisting Systems conforming to items A.13 in Table 12.2-1 of ASCE/SEI 7-

No. 16 gage: 0.054 inch (1.37 mm)

Originally Issued: 01/26/2010

Revised: 10/03/2016

Valid Through: 02/28/2017

05, and A.15 and A.16 in Table 12.2-1 of ASCE/SEI 7-10. The shear walls shall be limited to height limits and seismic categories listed in ASCE/SEI 7, Table 12.2-1, for the respective light frame shear wall bearing wall system.

Wind loadings shall be determined in accordance with IBC Section 1609 and ASCE/SEI 7.

4.1.2 The Nominal (V_n) and Allowable Stress Design (V_{asd}) shear values for wind and earthquake forces are shown in Tables 1, 1A, 2, 3, 4, 5, and 6 of this report with associated deflections for shear walls using Sure-Board[®] Series 200, 200W, and 200B Structural Panels attached to Cold-Formed Steel or Wood studs. Nominal shear values shall be multiplied by the appropriate strength reduction factor to determine LRFD design strength in accordance with footnote 4 of Tables 1, 1A, 2, 3, 4, 5, and 6 of this report as set forth in 2015 and 2012 IBC Section 2211.6, 2009 IBC Section 2210.6, Chapter 23 of the IBC, and R301.1.3 of the IRC.

4.1.3 Design Deflection:

The deflection of a 200 or 200W shear wall fastened throughout on steel stud framing shall be permitted to be calculated in accordance with Eq. 4.1.3. Eq. 4.1.3 shall not be used to estimate deflection for shear strengths exceeding the tabulated nominal values in this report:

$$\Delta = \frac{2\nu h^3}{3E_s A_c b} + \omega_1 \omega_2 \left(\frac{\nu h}{\rho G t_{s_SB}}\right) + (\omega_1)^{1.25} \omega_2 \omega_3 \omega_4 \left(\frac{\nu}{\beta}\right)^{\alpha} + \left(\frac{h}{b}\right) \delta_{anchorage} \qquad (Eq. \ 4.1.3)$$

Where

 $A_c = Gross cross-sectional area of chord/boundary studs, in² (mm²)$

b = Width of shear wall, in. (mm)

 $E_s =$ Modulus of elasticity of steel, 29,500,000 psi (203,000 MPa)

 F_y = minimum specified yield strength of steel sheet in the Sure-Board sheathing, psi (MPa)

G = Shear modulus of steel in the Sure-Board sheathing,

11,300,000 psi (78,000 MPa)

h = Wall height, in. (mm)

s = Fastener spacing at panel edges, in. (mm)

 $t_{s_{SB}}$ = Sure-Board sheathing steel design thickness, in. (mm)

 t_{s_F} = Cold-formed steel framing design thickness, in. (mm) v = Shear demand (V/b), lb/in (N/mm)

V = Total lateral load applied to the shear wall, lb (N)

 Δ = Calculated deflection, in. (mm)

 $\delta_{anchorage}$ = Vertical deformation from anchorage system, in. (mm)

 $\rho = 1.0$

 β = product specific inelastic stiffness factor, lb/in/in ^{1/ α}, in Table 4.1.3 of this report.

 α = product specific inelastic stiffness multiplier, in Table 4.1.3 of this report.

 $\omega_1 = s/(6 \text{ in.}) \{s/152.4 \text{ mm}\}$

 $\omega_2 = (0.0346 \text{ in.})/t_{s_F} \{(0.8788 \text{ mm})/t_{s_F}\}$

$$\omega_3 = [(h/b)/2]^{\circ}$$

 $\omega_4 = [(33,000 \text{ psi})/\text{F}_y]^{0.5} \{[(228 \text{ MPa})/\text{F}_y]^{0.5}\}$

Table 4.1.3 -- Sure-Board Shear Wall

Parameter	Sure-Board	Sure-Board
	Series 200	Series 200W
α	2.566	2.359
β [(lb./in.)/(in. ^{1/α})]	126.16	107.73
β [(N/mm)/(mm ^{1/α})]	6.263	4.788

4.1.4 The maximum shear-wall height-to-width ratio is 2¹/₄:1. Panels shall be fastened in accordance with footnote 2 of Tables 1, 1A, 2, 3, 4, 5, and 6 of this report, as applicable.

4.1.5 Design of shear wall connections, such as uplift holddowns, shear to base anchorage and shear transfer from horizontal elements are beyond the scope of this report and the design professional shall provide appropriate design and detailing information to the code official. The collector shall be designed in accordance to and comply with the IBC or the IRC and be sized to exceed the loads resisted by the shear wall.

4.16 Cold-Formed Steel or Wood framing design for outof-plane and axial loads shall comply with the IBC or IRC, as applicable. For installation in Seismic Design Category C, D, E, and F, additional requirements in 2015 and 2012 IBC Section 2211.6, 2009 IBC Section 2210.6, Chapter 23 of the IBC, or IRC, AISI S100, and ASCE/SEI 7 apply.

4.2 Installation

4.2.1 General

The panels shall be directly applied to the studs at interior and exterior shear walls and are limited to applications where there is no continuous direct exposure to the weather or damp environments other than during construction. Construction exposure shall not to exceed the board (gypsum, cement, or fiberboard) manufacturer's recommendations or shall be protected during construction from direct moisture exposure to gypsum. In areas that may be exposed to possible moisture intrusion, water resistant sheathing is required. Sure-Board[®] products may be installed as specified by the registered design professional on assemblies as permitted by the IBC or IRC in all Seismic Design Categories.

4.2.2 Steel Framing

4.2.2.1 Installation shall be in accordance with this report

Originally Issued: 01/26/2010

Revised: 10/03/2016

Valid Through: 02/28/2017

and the manufacturer's published Installation and Cutting Sure-Board® Series 200, 200W, and 200B instructions. Where conflicts occur, the more restrictive shall govern. Field repair of Sure-Board® Series 200, 200W, and 200B panels with surface damaged gypsum wallboard may be accomplished following Section 3 of Installation and Cutting Sure-Board[®] Series 200, 200W, and 200B, available from the manufacturer upon request or online at www.sureboard.com

4.2.2.2 Sure-Board[®] Series 200, 200W, and 200B Structural Panels shall be placed with the long dimension parallel or perpendicular to steel stud framing. The steel face shall be in contact with the framing. All panel edges (top and bottom) shall be fully blocked by framing studs, track, blocking, or flat straps of the same gage as the framing material and include an end collector element to be determined by the Design Professional in accordance with the IBC, IRC, the AISI S100, and the ASCE/SEI 7 seismic provisions. Minimum required collector elements are defined in Section 3.3.3 of this report, and are required at both shear wall ends. Maximum stud spacing shall not exceed 24 inches (610 mm) on center. Screws attaching panels shall be installed in one operation through the panels into the framing. Screws or pneumatic pin heads are required to be located ³/₈ inch (9.53 mm) minimum from panel edges. Screw heads shall be driven flush with surface. Screws shall penetrate at least three exposed threads into framing members.

4.2.2.3 A minimum panel size of 16 inches by 96 inches (406 mm by 2438 mm) is acceptable, provided all perimeter edges are fastened to framing members at the required spacing. All panels may be fastened at panel joint stud without staggering the fasteners at each panel. No panels shall be lapped over another at these lap joint studs. Joint spacing between panels shall range from 0 inch to 1/8inch (0 to 3.2 mm). Top and Bottom track gaps to floors or ceilings are not limited except that panels shall have at least 1 inch (25.4 mm) minimum track leg height behind panel edges, without adding additional backing for fasteners. The designed fastener spacing shall apply to each panel edge. No panel edges shall be lapped and attached with a single row of fasteners.

4.2.2.4 Holes cut in Sure-Board[®] panels shall be approved by the code official based on the recommendations supplied by manufacturer and as recommended by the Design Professional.

4.2.3 Wood Framing

4.2.3.1 Installation shall be in accordance with this report and the manufacturer's published installation instructions. Field repair of Sure-Board® Series 200 Structural Panels with surface damaged gypsum wallboard may be accomplished following Section 3 of Installation and Cutting Sure-Board® Series 200 and 200W, available from the manufacturer upon request or online at

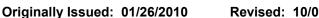
www.sureboard.com

4.2.3.2 Sure-Board[®] Series 200, 200W and 200B Structural Panels shall be placed with the long dimension parallel or perpendicular to stud framing. The steel face shall be in contact with the framing. All panel edges shall be fully blocked by framing studs, blocking or plates. Maximum stud spacing as tested shall not exceed 24 inches (610 mm) on center. Nail and screw heads are required to be located 3/8 inch (9.53 mm) minimum from panel edges. Nail and screw heads shall be installed flush with surface of MDF, non-combustible sheathing or gypsum wallboard to accommodate application of finish material where required.

4.2.3.3 A minimum panel size of 16 inches by 96 inches (406 mm by 2438 mm) is acceptable provided all perimeter edges are fastened to framing members at the required spacing. All panels may be fastened at panel joint stud without staggering the fasteners at each panel. No panels shall be lapped over another at these lap joint studs. Joint spacing between panels shall range from 0 inch to 1/8 inch (0 to 3.2 mm). Top and Bottom plate gaps to floors or ceilings are not limited except that panels shall have at least 1 inch (25.4 mm) minimum plate thickness behind panel edge, without adding additional blocking for fasteners. The designated fastener spacing applies to each panel edge. No panel edges can be lapped and attached with a single row of fasteners.

4.2.3.4 Holes cut in Sure-Board[®] panels shall be approved by the code official based on the recommendations supplied by manufacturer and as recommended by the Design Professional.

4.3 Special Inspections


When required by the code official, periodic special inspections for seismic or wind resistance shall be in accordance with the requirements of IBC Chapter 17 corresponding to the applicable type (wood or cold-formed steel) of light-framed construction.

5.0 LIMITATIONS

The Sure-Board[®] Series 200, 200W, and 200B Structural Panels, described in this report, comply with the codes listed in Section 1.1 of this report, subject to the following conditions:

5.1 Panels are manufactured, identified and installed in accordance with this report.

5.2 The Nominal (V_n) and Allowable Stress Design (V_{asd}) shear values for shear walls are limited to the values noted in Tables 1, 1A, 2, 3, 4, 5, and 6 of this report. To determine the design strength values, the appropriate strength reduction factor, in accordance with 2015, 2012 IBC Section 2211.6, 2009 IBC Section 2210.6, or Chapter 23

Revised: 10/03/2016

Valid Through: 02/28/2017

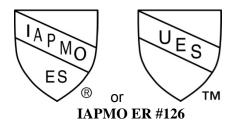
of the IBC, or Section R301.1.3 of the IRC shall be applied.

5.3 Plans and calculations demonstrating compliance with codes listed in Section 1.1 of this report and this report shall be submitted to the code official for approval.

5.4 Applied loads shall be adjusted in accordance with Section 1605 of the IBC. Calculations shall demonstrate in addition to other requirements as stipulated by the code official, that the applied loads are less than the design loads described in the IBC, or IRC and this report.

5.5 All nominal and allowable load capacities provided to this report do not include 1.33 stress increase. The 1.33 increase for transient loads shall not be applied to allowable shear loads for these products.

5.6 The panels are produced at CEMCO. WARE INDUSTRIES, WELLBILT and INTERMAT facilities.


6.0 SUBSTANTIATING DATA

TM

Data in accordance with the IAPMO Uniform ES Evaluation Criteria for the Testing and Analysis of Steel Sheet Sheathing for Wood and Cold Formed Steel Light Framed Structure Shear Walls (EC 003-2016) and an IAPMO Uniform ES approved quality control manual.

7.0 IDENTIFICATION

A label shall be affixed on at least one of the following: product, packaging, installation instructions or descriptive literature. The label shall include the company name or trademark, model number, and the IAPMO Uniform ES Mark of Conformity the name of the inspection agency (when applicable) and the Evaluation Report Number (ER-126) to identify the products recognized in this report. A die-stamp label may also substitute for the label. Either Mark of Conformity may be used as shown below:

in 9) ale

Brian Gerber, P.E., S.E. Vice President, Technical Operations **Uniform Evaluation Service**

uhand

Richard Beck, PE, CBO, MCP Vice President, Uniform Evaluation Service

GP Russ Chanev

CEO, The IAPMO Group

For additional information about this evaluation report please visit www.uniform-es.org or email at info@uniform-es.org

Originally Issued: 01/26/2010

Revised: 10/03/2016

Valid Through: 02/28/2017

TABLE 1 - NOMINAL AND ALLOWABLE SHEAR RESISTANCE To WIND OR SEISMIC FORCES AND DISPLACEMENT (inches) FOR SHEAR WALLS WITH SURE-BOARD® SERIES 200 / SERIES 200B STRUCTURAL PANELS ATTACHED TO LIGHT GAGE STEEL C-STUDS AT 24" O.C. with SCREWS (pounds per foot) ¹

STEEL FRAMING	FASTENER SPACING AT PANEL EDGES INCHES ON CENTER ⁶											
	6			4			3			2		
Minimum Gage⁵	V n ^{2,3,4,7} (plf)	V _{asd} ^{2,3,8} (plf)	∆ V_{asd}⁰ (inch)	V n ^{2,3,4,7} (plf)	V _{asd} ^{2,3,8} (plf)	∆ V_{asd}⁹ (inch)	V _n ^{2,3,4,7} (plf)	V _{asd} ^{2,3,8} (plf)	∆ V_{asd}⁹ (inch)	V n ^{2,3,4,7} (plf)	V _{asd} ^{2,3,8} (plf)	∆ V_{asd}⁹ (inch)
	1,085	434	0.21	1,545	618	0.21	1,730	692	0.24	1,915	766	0.26
No. 20 (0.033 inch)	1,543 ¹⁰	617	0.17	2,211 ¹⁰	885	0.22	2,486 ¹⁰	977	0.22	2,537 ¹⁰	906	0.16
No. 18 (0.043 inch)	1,405 ¹⁰	562	0.24	1,925 ¹⁰	770	0.23	2,821 ¹⁰	1,126	0.25	2,989 ¹⁰	1,196	0.21
No. 16 (0.054 inch)	1,697	678	0.25	2,306	922	0.25	2,957 ¹⁰	1,092	0.26	3,647 ¹⁰	1,253	0.28
No.16 (0.054 inch) 2-Sided										5,011 ¹⁰	1,710	0.28
No. 14 (0.071 inch)										3,292	1,257	0.24
No. 14 (0.071 inch) 2-Sided										4,635*	1,700	0.22

For SI: 1 inch = 25.4 mm, 1 lb/linear = 0.0146 N/mm.

*Fasteners 6" O.C. into intermediate framing

¹ These values are for short-term loads due to wind or earthquake.

² The screws are described in Section 3.2.1 and are installed in accordance with Section 4.2.2.2 of IAPMO ES ER-126.

³ Tabulated values listed in tables are for panels applied to one side or two sides of a wall.

 4 For load and resistance factor design (LRFD) loads, the tabulated V_n load values shall be multiplied by the resistance factor 0.60 for Seismic or 0.65 for Wind.

⁵ Section 3.3.1 in IAPMO ES ER-126, describes minimum base metal thickness associated with gages.

⁶ All panel edges shall be blocked. Panels can be installed vertically or horizontally. Fasteners shall be spaced a maximum of 12 inches on center along intermediate framing members, except as specifically noted in Table 1 of this report.

⁷ V_n = Nominal Strength.

 ${}^{8}\mathbf{V}_{asd}$ = ASD Design Load.

 ${}^{9}\Delta$ V_{asd}= Deflection at V_{asd} design Load.

¹⁰ Nominal strength is based on double c-stud collectors (end posts) to be designed and installed using one gage thicker than the framing material used in the shear wall.

Originally Issued: 01/26/2010

Revised: 10/03/2016

Valid Through: 02/28/2017

TABLE 1A - NOMINAL AND ALLOWABLE SHEAR RESISTANCE TO WIND OR EARTHQUAKE FORCES AND DISPLACEMENT (inches) FOR SHEAR WALLS WITH SURE-BOARD® SERIES 200 / SERIES 200B STRUCTURAL PANELS ATTACHED TO LIGHT GAGE STEEL C-STUDS AT 16" O.C. WITH SCREWS (pounds per foot) ¹

STEEL FRAMING	FASTENER SPACING AT PANEL EDGES INCHES ON CENTER ⁶											
	6			4			3			2		
Minimum Gage⁵	V _n ^{2,3,4,7} (plf)	V _{asd} ^{2,3,8} (plf)	∆V _{asd} ⁹ (inch)	V _n ^{2,3,4,7} (plf)	V _{asd} ^{2,3,8} (plf)	∆V _{asd} ⁹ (inch)	V _n ^{2,3,4,7} (plf)	V _{asd} ^{2,3,8} (plf)	∆V _{asd} ⁹ (inch)	V _n ^{2,3,4,7} (plf)	V _{asd} ^{2,3,8} (plf)	∆V _{asd} ⁹ (inch)
14 (0.071 inch) 2-Sided										5,079	1,897	0.26

For SI: 1 inch = 25.4 mm, 1 lb/foot = 0.0146 N/mm.

¹ These values are for short-term loads due to wind or earthquake.

² The screws are described in Section 3.2.1 and are installed in accordance with Section 4.2.2.2 of IAPMO ES ER-126

³ Tabulated values listed in tables are for panels applied to one side or two sides of a wall.

 4 For load and resistance factor design (LRFD) loads, the tabulated V_n load values shall be multiplied by the resistance factor 0.60 for Seismic or 0.65 for Wind.

⁵ Section 3.3.1 in IAPMO ES ER-126, describes minimum base metal thickness associated with gages.

⁶ All panel edges shall be blocked. Panels are installed vertically or horizontally. Fasteners shall be spaced a maximum of 12 inches on center along intermediate framing members.

⁷ V_n = Nominal Strength.

⁸ V_{asd} = ASD Design Load.

 ${}^{9}\Delta$ V_{asd} = Deflection at V_{asd} design Load.

TABLE 2 - NOMINAL AND ALLOWABLE SHEAR RESISTANCE TO WIND OR EARTHQUAKE FORCES AND DISPLACEMENT (inches) FOR SHEAR WALLS WITH SUREBOARD[®] SERIES 200W / SERIES 200B STRUCTURAL PANELS ATTACHED TO LIGHT GAGE STEELC-STUDS AT 16" O.C. WITH NO. 10 SCREWS (pounds per foot) ¹

STEEL FRAMING	No. 10 SCREW SPACING AT PANEL EDGES AND FIELD 2/6, INCHES ON CENTER ⁶							
Minimum Gage⁵	V _n ^{2,3,4,7} (plf)	V _{asd} ^{2,3,8} (plf)	∆V _{asd} ⁹ (inch)					
No. 18-Ga. (0.043 in.)	2,168	703	0.14					
No. 16-Ga. (0.054 in.)	2,704	923	0.18					
No. 14-Ga. (0.071 in.)	2,755	934	0.15					
No. 14-Ga. (0.071 in.) 2 Sided	5,091	1,922	0.29					

For **SI:** 1 inch = 25.4 mm, 1 plf = 0.0146 N/mm.

¹ These values are for short term loads due to wind or earthquake

² The screws as described in Section 3.2.2 and installed in accordance with Section 4.2.2.2 of IAPMO ES ER-126

³ Tabulated values listed in tables are for panels applied to one side or two sides of a wall.

⁴ For load and resistance factor design (LRFD) loads, the tabulated V_n load values shall be multiplied by the resistance factor 0.60 for Seismic or 0.65 for Wind.

⁵ Section 3.3.1 in evaluation report IAPMO ES ER-126, describes minimum base metal thickness associated with gages.

⁶ All panel edges shall be blocked. Panels are installed vertically or horizontally. Fasteners shall be spaced a maximum of 6 inches on center along intermediate framing members.

⁷ V_n = Nominal Strength.

⁸ V_{asd} = ASD Design Load.

 ${}^{9}\Delta$ V_{asd} = Deflection at V_{asd} design Load.

Originally Issued: 01/26/2010

Revised: 10/03/2016

Valid Through: 02/28/2017

TABLE 3 - NOMINAL AND ALLOWABLE SHEAR RESISTANCE TO WIND OR EARTHQUAKE FORCES AND DISPLACEMENT (inches) FOR SHEAR WALLS WITH SUREBOARD® SERIES 200W / SERIES 200B STRUCTURAL PANELS ATTACHED TO LIGHT GAGE STEEL C-STUDS AT 24" O.C. WITH NO. 10 SCREWS (pounds per foot) ¹

STEEL FRAMING	No. 10 SCREW SPACING	AT PANEL EDGES AND FIELD 2/6, INCHES ON CENTER ⁶				
Minimum Gage⁵	V _n ^{2,3,4,7} (plf)	V _{asd} ^{2,3,8} (plf)	$\Delta \mathbf{V}_{asd}^{9}$ (inch)			
No. 20-Ga. (0.033 in.)	1,518	505	0.11			
No. 18-Ga. (0.043 in.)	1,791	631	0.12			

For **SI:** 1 inch = 25.4 mm, 1 plf = 0.0146 N/mm.

¹These values are for short term loads due to wind or earthquake

²The screws as described in Section 3.2.2 and installed in accordance with Section 4.2.2.2 of IAPMO ES ER-126.

³ Tabulated values listed in tables are for panels applied to one side or two sides of a wall.

⁴ For load and resistance factor design (LRFD) loads, the tabulated V_n load values shall be multiplied by the resistance factor 0.60 for Seismic or 0.65 for Wind.

⁵ Section 3.3.1 in evaluation report IAPMO ES ER-126, describes minimum base metal thickness associated with gages.

⁶ All panel edges shall be blocked. Panels are installed vertically or horizontally. Fasteners shall be spaced a maximum of 6 inches on center along intermediate framing members.

⁷ V_n = Nominal Strength.

⁸ V_{asd} = ASD Design Load.

 ${}^{9}\Delta$ V_{asd}= Deflection at V_{asd} design Load.

TABLE 4 - NOMINAL AND ALLOWABLE SHEAR RESISTANCE TO WIND OR EARTHQUAKE FORCES AND DISPLACEMENT (inches) FOR SHEAR WALLS WITH SURE-BOARD[®] SERIES 200W / SERIES 200B STRUCTURAL PANELS ATTACHED TO DF STUDS AT 16" O.C. WITH 10D NAILS (pounds per foot) ¹

FRAMING		10d (2.25" min X .148) NAIL SPACING AT PANEL EDGES AND FIELD, INCHES ON CENTER ³										
Stud: 2 x 4 stud grade DF		4/6			2/6		2/	6 Two Side	ď		3/6	
End post: 4 x 4 No. 1 grade DF *4 x 6 No. 1 grade DF Sill and top plate:	V _n ^{2,3,4,5,6}	V _{asd} ^{2,3,5,7} (plf)	ΔV_{asd}^{8} (inch)	V _n ^{2,3,4,5,6} (plf)	$V_{asd}^{2,3,5,7}$ (plf)	ΔV_{asd}^8 (inch)	Vn ^{2,3,4,5,6} (plf)	$V_{asd}^{2,3,5,7}$ (plf)	ΔV_{asd}^8 (inch)	V _n ^{2,3,4,5,6} (plf)	V _{asd} ^{2,3,5,7} (plf)	ΔV_{asd}^{8} (inch)
2 x 4 standard grade DF *Sill Plate: 2x4 TimberStrand or standard grade DF	1,453	583	0.18	2,357	950	0.23	4,884	1,827	0.24			

For **SI:** 1 inch = 25.4 mm, 1 plf = 0.0146 N/mm.

¹ These values are for short term loads due to wind or earthquake

² The nails are described in Section 3.2.5 and are installed in accordance with Section 4.2.3.2 in IAPMO ES ER-126.

³ All panel edges shall be blocked. Panels are installed vertically or horizontally. Fasteners shall be spaced a minimum of 6 inches on center along field framing members.

 4 For load and resistance factor design (LRFD) loads, the tabulated **V**_n load values shall be multiplied by the resistance factor 0.60 for Seismic or 0.65 for Wind.

⁵ Tabulated values listed in tables are for panels applied to one side or two sides of a wall.

 ${}^{6}\mathbf{V}_{n}$ = Nominal Strength.

⁷ V_{asd} = ASD Design Load.

^{8 Δ} **V**_{asd} = Deflection at **V**_{asd} design Load.

Originally Issued: 01/26/2010

Revised: 10/03/2016

Valid Through: 02/28/2017

TABLE 5 - NOMINAL AND ALLOWABLE SHEAR RESISTANCE TO WIND OR EARTHQUAKE FORCES AND DISPLACEMENT (inches) FOR SHEAR WALLS WITH SURE-BOARD® SERIES 200 / SERIES 200B STRUCTURAL PANELS ATTACHED TO DF STUDS AT 16" O.C. WITH NO. 8 X 2" SCREWS (pounds per foot) ¹

FRAMING	Νο	No. 8 X 2" SCREW SPACING AT PANEL EDGES AND FIELD, INCHES ON CENTER ³									
Stud: 2 x 4 stud grade DF				2/12		2/	12 (2-Sidec	l)*			
End post: 4 x 4 No. 1 grade DF Sill and top plate: 2 x 4 standard grade DF *Sill Plate: 2x4			V n ^{2,3,4,5,6} (plf)	V _{asd} ^{2,3,5,7} (plf)	ΔV_{asd}^{8} (inch)	V n ^{2,3,4,6} (plf)	V _{asd} ^{2,3,7} (plf)	∆ V_{asd}⁸ (inch)			
TimberStrand or standard grade DF			2,751	1,086	0.23	4,501	1,800	0.23			

For **SI:** 1 inch = 25.4 mm, 1 plf = 0.0146 N/mm.

¹ These values are for short term loads due to wind or earthquake

² The screws are described in Section 3.2.6 and are installed in accordance with Section 4.2.3.2 in IAPMO ES ER-126.

³ All panel edges shall be blocked or backed. Panels are installed vertically or horizontally. Screws shall be spaced a minimum of 12 inches on center along field framing members.

⁴ For load and resistance factor design (LRFD) loads, the tabulated V_n load values shall be multiplied by the resistance factor 0.60 for Seismic or 0.65 for Wind.

⁵ Tabulated values listed in tables are for panels applied to one side or two sides of a wall.

 ${}^{6}\mathbf{V}_{n}$ = Nominal Strength.

 $^{7}V_{asd}$ = ASD Design Load.

 $^{8 \, \triangle} V_{asd}$ = Deflection at V_{asd} design Load.

TABLE 6 - NOMINAL AND ALLOWABLE SHEAR RESISTANCE TO WIND OR EARTHQUAKE FORCES AND DISPLACEMENT (inches) FOR SHEAR WALLS WITH SURE-BOARD® SERIES 200 / SERIES 200W / SERIES 200B STRUCTURAL PANELS ATTACHED TO LIGHT GAGE STEEL C-STUDS AT 16" O.C. WITH COMBINED SCREWS AND PNEUMATIC PINS MANUFACTURED BY AEROSMITH INC. (pounds per foot) ¹

FRAMING		SCREW / SCREW / PIN SPACING AT PANEL EDGES AND FIELD INCHES ON CENTER ³										
No. 18 gage ⁶ 3 5/8" C-stud	2/12/210	⁰ No. 18 g D/G	age 5/8"	2/12/2 ¹⁰	No. 16 ga D/G	ige 5/8"	2/12/210	No. 18 gage	∋ ¼" Μ/Β	2/12/210	⁹ No. 16 gag M/B	ge ¼"
@ 16" O.C.	V _n ^{2,3,4,5,7} (plf)	V _{asd} ^{2,3,5,8} (plf)	ΔV _{asd} ⁹ (inch)	V n ^{2,3,4,5,7} (plf)	V _{asd} ^{2,3,5,8} (plf)	ΔV _{asd} ⁹ (inch)	V _n ^{2,3,4,5,7} (plf)	V _{asd} ^{2,3,5,8} (plf)	ΔV _{asd} ⁹ (inch)	V _n ^{2,3,4,5,7} (plf)	V _{asd} ^{2,3,5,8} (plf)	ΔV_{asd}^9 (inch)
No. 16 gage ⁶ 3 5/8" C-stud @ 16" O.C.												
	2,449	975	0.21	2,825	1,100	0.24	2,201	811	0.17	2,495	932	0.19

For SI: 1 inch = 25.4 mm, 1 plf = 0.0146 N/mm.

¹ These values are for short term loads due to wind or earthquake

² The pins and screws are described in Section 3.2.4 and are installed in accordance with Section 4.2.2.2 in IAPMO ES ER-126.

³ All panel edges shall be blocked. Panels are installed vertically or horizontally. Fasteners shall be spaced a minimum of 12 inches on center along field framing members.

⁴ For load and resistance factor design (LRFD) loads, the tabulated **V**_n load values shall be multiplied by the resistance factor 0.60 for Seismic / 0.65 for Wind.

⁵ Tabulated values listed in tables are for panels applied to one side or two sides of a wall.

⁶ Section 3.3.1 in evaluation report IAPMO ES ER-126, describes minimum base metal thickness associated with gages.

⁷ V_n = Nominal Strength.

⁸ V_{asd} = ASD Design Load.

 ${}^{9}\Delta V_{asd}$ = Deflection at V_{asd} design Load.

¹⁰ Fastener Schedule:

A) All top/bottom track screwed only with No. 8 x 1 $\frac{3}{4}$ " self-tapping screws at 2"o.c. B) No. 8 x 1 $\frac{3}{4}$ " self-tapping screws at 12"o.c. at all vertical studs/posts C) 1 $\frac{1}{4}$ "x 0.100-in knurled shank for DensGlass Gold (D/G) and 1 3/8"x 0.100-in for Magnesium oxide Board MgO (M/B) both at 2"o.c. between screws.(Designation for fasteners A) = 2"o.c. B) = 12"o.c. C) = 2"o.c.)

Originally Issued: 01/26/2010

Revised: 10/03/2016

Valid Through: 02/28/2017

CALIFORNIA SUPPLEMENT

EVALUATION SUBJECT: SURE-BOARD[®] SERIES 200, 200W, AND 200B STRUCTURAL PANELS INSTALLED ON COLD-FORMED STEEL OR WOOD FRAMED SHEAR WALLS

REPORT HOLDER: Intermat 2045 Placentia Avenue Costa mesa, California 92627 www.sureboard.com support@sureboard.com

CSI Division: 05-METALS CSI Section: 05160-Metal Framing Systems

1.0 SCOPE OF EVALUATION

1.1 Compliance with the following codes:

• 2016 and 2013 California Building Code[®] (CBC)

1.2 Recognition: The Sure-Board[®] Series 200, 200W, and 200B Structural Panels evaluated in IAPMO UES ER-1.26 complies with the CBC, subject to Additional Requirements in Sections 2.0, 3,0, 4.0, 5.0, and 6.0 of this supplement.

2.0 PRODUCT USE

The structural panels are an alternative to Cold-Formed Steel or Wood stud shear wall systems described in Sections 2211 and 2305, respectively, of the 2016 and 2013 CBC.

3.0 PRODUCT DESCRIPTION

3.1 Steel Framing: Steel framing shall be in accordance with Section 2211 of the CBC.

3.2 Wood Framing: Minimum framing members shall conform to Chapter 23 of the CBC.

4.0 DESIGN AND INSTALLATION

4.1 Shear Wall Design: Design provisions in Sections 4.1.1, 4.1.2, 4.1.3, 4.1.4, 4.1.5, and 4.1.6 of ER-126 shall apply to the CBC except where modified as follows. The Nominal (V_n) and Allowable Stress Design (V_{asd}) shear values for wind and earthquake forces are shown in Tables 1, 1A, 2, 3, 4, 5, and 6 of ER-126 with associated deflections for shear walls using Sure-Board[®] Series 200, 200W, and 200B Structural Panels attached to Cold-Formed Steel or Wood studs. Nominal shear values shall be multiplied by the appropriate strength reduction factor to determine LRFD design strength in accordance with footnote 4 of Tables 1,

1A, 2, 3, 4, 5, and 6 of ER-126 as set forth in Section 2211.6 or Section 2305 of the 2015 or 2012 IBC.

The collector design shall comply with the CBC and sized to exceed the loads resisted by the shear wall. Wall anchorage shall comply with CBC Section 2212.5.2 or 2211A.4, as applicable.

Cold-Formed Steel or Wood framing design for out-of-plane and axial loads shall comply with the CBC. For installation in Seismic Design Category C, D, E, and F, additional requirements for steel framing in Section 2211 of the CBC shall be observed.

4.2 Installation

4.2.1 Steel/Wood Framing: Installation provisions in Section 4.2 of ER-126 shall apply to the CBC except where modified as follows. Sure-Board[®] Series 200, 200W, and 200B Structural Panels are placed with the long dimension parallel or perpendicular to stud framing. The steel face shall be in contact with the framing. All panel edges, top and bottom shall be fully blocked by framing studs, track, blocking, or flat strap of the same gage as the framing material and include an end collector element to be determined by the Design Professional and the registered design professional using the CBC.

5.0 LIMITATIONS

The Sure-Board[®] Series 200, 200W, and 200B Structural Panels, described in this report, comply with the codes listed in Section 1.1 of this supplement, subject to the conditions in ER-126, except where modified as follows:

5.2 The Nominal (V_n) and Allowable Stress Design (V_{asd}) shear values for wind and earthquake forces are shown in Tables 1, 1A, 2, 3, 4, 5, and 6 of ER-126. To determine the LRFD design values, the appropriate strength reduction factor, in accordance with Section 2211 or 2305 of the CBC shall be applied.

5.4 Applied loads shall be adjusted in accordance with Section 1605 or 1605A of the CBC. Calculations shall demonstrate in addition to other requirements as stipulated by the building official, that the applied loads are less than the design loads described in CBC and this report.

6.0 SUBSTANTIATING DATA

Data in accordance with the IAPMO Uniform ES Evaluation Criteria for the Testing and Analysis of Steel Sheet Sheathing for Wood and Cold Formed Steel Light Framed Structure Shear Walls (EC 003-2016) and an IAPMO Uniform ES approved quality control manual.

For additional information about this evaluation report please visit www.uniform-es.org or email at info@uniform-es.org

Originally Issued: 12/18/2015

Revised: 12/12/2016

Valid Through: 12/31/2017

INTERMAT SURE-BOARD® SERIES 200S STRUCTURAL PANELS

CSI Section: 05160-Metal Framing Systems

1.0 RECOGNITION

Intermat Sure-Board[®] Series 200S Structural Panels have been evaluated as floor and roof sheathing in compliance with Chapters 15 and 23 of the IBC and Chapters R5 and R8 of the IRC. The panels resist vertical and horizontal diaphragm loads when attached to and supported by steel frame construction. The structural panels evaluated in this report comply with or are satisfactory alternatives to the following codes and regulations:

- 2015, 2012, 2009 and 2006 International Building Code[®] (IBC)
- 2015, 2012, 2009 and 2006 International Residential Code[®] (IRC)
- IAPMO Uniform ES EC-012, Adopted January 2016
- 2013 California Building Code[®] (CBC) Supplement attached
- 2013 California Residential Code[®] (CRC) Supplement attached

2.0 LIMITATIONS

Sure-Board[®] Series 200S Structural Panels as described in this report comply with the codes listed in Section 1.0 of this report subject to the following conditions:

2.1 Plans and structural calculations shall be submitted to the building official demonstrating compliance with the provisions of this report and applicable code requirements. Construction documents shall be prepared by a registered design professional when required by the statutes of the jurisdiction where the project will be constructed.

2.2 Construction, design and installation of panels shall be in conformance with this report and the manufacturer's published installation guidelines. Where conflicts occur the more restrictive shall prevail.

2.3 Use of Sure-Board[®] Series 200S Structural Panels in fire-resistance-rated assemblies is outside the scope of this report.

2.4 Use of Sure-Board[®] Series 200S Structural Panels in sound-rated assemblies is outside the scope of this report.

2.5 The panels are manufactured by INTERMAT and licensed manufacturers at manufacturing facilities located in Costa Mesa, California, City of Industry, California,

Pittsburg, California, or East Chicago, Illinois with independent quality inspections conducted by IAPMO Uniform ES.

3.0 PRODUCT USE

Sure-Board® Series 200S Structural Panels are used as noncombustible floor and roof panels for support of vertical gravity loads, resistance to vertical (gravity and wind uplift) loads and horizontal in-plane (wind and seismic) loads in building and other structures of cold-formed steel (CFS) light frame construction. When used to resist horizontal in-plane (wind and seismic) loads, the panels function as the sheathing component of a horizontal diaphragm. The panels are alternatives to floor and roof sheathing complying with IBC Sections 1507 and 2304.7 and IRC Sections R503 and R803. When used to resist horizontal in-plane loads, the panels are alternatives to wood structural panel sheathing used in diaphragms complying with AISI S213 as referenced in IBC Section 2211.6. The Sure-Board® Series 200S Structural Panels may be used as a component of a fire-resistance-rated assembly in accordance with IBC Section 703.2, based on testing in accordance with ASTME 119 or UL 263. Alternative methods in IBC Section 703.3 are also permitted.

4.0 PRODUCT DESCRIPTION

Sure-Board[®] Series 200S Structural Panels are a composite panel of light gage sheet steel and noncombustible sheathing bonded by a water-based adhesive. Panels are fastened directly to roof and floor framing members of cold-formed steel light frame construction with self-tapping screws. Panels are suitable for exposure to the exterior during construction but shall be covered by finish flooring or roof coverings upon completion of construction. Panels are available in widths of 48 inches (1219 mm) and standard lengths of 4 and 8 feet (1219 mm and 2438 mm).

4.1 Documented Design Values

4.1.1 Vertical (Gravity) Load Design: Determination of applicable design loads for dead and live gravity loads applied perpendicular to panels shall be in accordance with ASCE 7. Available strength and factored resistance for floor and roof sheathing to safely resist or support vertical design loads shall be determined in accordance with the Table 1 of this report. Values in Table 1 of this report are for use on panels continuous over two or more spans.

4.1.2 Horizontal (Wind and Seismic) Load Design: Values for the in-plane nominal strength of panels are established empirically. Allowable strength values (ASD) used a safety factor (Ω) of 2.5 for seismic loads and 2.0 for wind or other

The product described in this Uniform Evaluation Service (UES) Report has been evaluated as an alternative material, design or method of construction in order to satisfy and comply with the intent of the provision of the code, as noted in this report, and for at least equivalence to that prescribed in the code in quality, strength, effectiveness, fire resistance, durability and safely, as applicable, in accordance with IBC Section 104.11. This document shall only be reproduced in its entirety.

Copyright © 2016 by International Association of Plumbing and Mechanical Officials. All rights reserved. Printed in the United States. Ph: 1-877-4IESRPT • Fax: 909.472.4171 web: www.uniform-es.org • 4755 East Philadelphia Street, Ontario, California 91761-2816 – USA

Number:

EVALUATION REPORT

Originally Issued: 12/18/2015

TM

Revised: 12/12/2016

Valid Through: 12/31/2017

in-plane loads. Values for factored resistance (LRFD) used a resistance factor (ϕ) of 0.60 for seismic and 0.65 for wind and all other in-plane loads.

Determination of applicable design loads shall be in accordance with ASCE 7. Allowable strength or factored resistance for horizontal diaphragms to safely resist or support horizontal design loads shall be determined in accordance with Table 2 of this report for panels constructed with the magnesium-oxide Magnum Boards or fiber-cement boards noted in Section 4.4.1.2 of this report. Allowable strength values in Table 2 of this report shall not be further increased for loads of short term duration such as wind or seismic. The diaphragm length and width shall be limited by one of the following: engineering mechanics; applied loads; shear capacity of the diaphragm; and diaphragm deflection limited by the requirements of ASCE 7 in Sections 12.8.6 entitled, "Story Drift Determination"; or Section 12.12 entitled, "Drift and Deformation".

Supporting framing members directly connected to the panels shall be designed to limit deflection to no more than L/360 for total combination of loads applied. For horizontal diaphragms, the registered design professional shall verify that the framing members at boundaries of the diaphragm have sufficient capacity to develop the required strength of the diaphragm including but not limited to prevention of compression failure in the rim track.

4.1.3 Vertical Wind Uplift Design: Determination of applicable design loads for wind uplift loads applied perpendicular to panels shall be in accordance with ASCE 7. Allowable strengths, corresponding to joist spacings and screw placement to safely resist vertical wind uplift design loads shall be determined in accordance with the Table 3 of this report.

4.2 Installation

Panels shall be placed with the long dimension perpendicular to framing members and with the steel side face in direct contact with the framing. Panels installed as floor or roof panels shall be continuous over two spans. Joint spacing between panels shall be 0 inch to 1/8 inch (0 to 3.2 mm). Maximum spacing of framing members that support panels shall not exceed 24 inches (610 mm) on center.

Panel edges that are parallel to framing members shall be fastened to either main framing members or blocking of the same gage as the framing member i.e. joist or rafter. Panel edges that are parallel to framing members shall be attached with a separate row of fasteners for each panel edge.

Panel edges that are perpendicular to framing members shall be attached to either a framing member, blocking or to the extended steel sheet backing tab provided on the composite panel in the row below. When panel edges that are perpendicular to the framing members are attached to the backing tab, a single row of fasteners is sufficient for fastening of both panel edges.

For diaphragm construction, spacing of fasteners shall be in accordance with Table 2 of this report for panel edges and at 6 inches (152 mm) on center for connection to other framing members in the field. For wind uplift, spacing of fasteners shall be in accordance with Table 3 of this report. Fasteners attaching panels are installed in one operation through the panels into the framing. Fasteners shall be located at least 3/8 inch (9.5 mm) from the panel edges and driven flush with the surface of the noncombustible sheathing. Length of screw fasteners shall be sufficient to penetrate at least three exposed threads into framing members.

4.3 Special Inspections: Periodic special inspections for wind or seismic resistance corresponding to the applicable type (wood or cold-formed steel) of light-framed construction shall be provided when the panels are components of a wind - or seismic-force-resisting system located in areas set forth in Chapter 1705 of the IBC. Inspection requirements shall comply with IBC Section 1705.

4.4 Material Information

4.4.1 Sure-Board[®] Series 200S Structural Panels: Sure-Board[®] Series 200S Structural Panels are composite products consisting of steel sheet laminated to noncombustible boards with an adhesive.

4.4.1.1 Panel Sheet Steel: Sheet steel are No. 22 gage (0.027 inch / 0.686 mm) minimum base-metal thickness complying with ASTM A653 CS, Grade 33 minimum, and ASTM A1003/A1003M. The sheets are provided with a G40 hot-dipped galvanized coating conforming to ASTM A924.

4.4.1.2 Panel Noncombustible Boards: Noncombustible sheathing consists of either a fiber-cement board or a magnesium-oxide board, as shown in Table 4 of this report.

	Table 4 Panel Noncombustible Boards ¹										
Board Name	Minimum board	Surface Charact	Burning eristics ²	Description							
	thickness (inches)	Flame Spread Index	Smoke- developed index								
James Hardie Backer Board 500	0.42	0	5	Cellulose fiber- reinforced fiber-cement board							
Plycem Armoroc	0.55 0.625, 0.75	0 0	5 5								

Number:

Revised: 12/12/2016

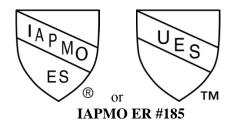
Valid Through: 12/31/2017

		Magnum Board	0.50	5	5	Magnesium oxide-board reinforced with fiberglass mesh on both faces
--	--	-----------------	------	---	---	---

For SI: 1 inch = 25.4 mm

¹ Tested in accordance with ASTM E136 in accordance with Section 703.5 of the IBC.

² Tested in accordance with ASTM E84.


4.4.1.3 Panel Adhesive: The adhesive used to bond the sheet steel to the noncombustible sheathing is a synthetic-resinlatex, water-based adhesive in compliance with ASTM C916-79, Type II and NFPA-90A. Adhesive is used in the manufacture of the Sure-Board[®] Series 200S Structural Panels under an approved quality control program.

4.4.2 Fasteners: Fasteners used to connect the Sure-Board[®] Series 200S Structural Panels to steel framing members ranging from 33 mils (No. 20 nominal gage) to 118 mils (No. 10 gage) thickness shall be self-drilling/selftapping pilot point bugle head screws that are manufactured from steel wire conforming to ASTM A548, Grade 1013 to 1022. Screws shall be minimum 0.138 inch diameter (3.5 mm) (No. 6 gage) by 1-5/8 inch (41 mm) minimum length and have bugle heads with a minimum 0.3145-inch (8 mm) head diameter. All Screws shall have winged drill points that are at least 3/8 inch (9.5 mm) in length and comply with applicable provisions of SAE J78 and ASTM C954. For horizontal diaphragms the screw sizes are limited to No.8 (0.164 inch/4.2 mm diameter) and No. 10 (0.190 inch/4.9 mm diameter).

4.4.3 Framing Support Members: Framing members shall be galvanized cold-formed steel having a minimum thickness designation of 33 mils (No. 20 nominal gage) and a maximum thickness designation of 118 mils (No. 10 nominal gage). Flange width of framing members shall be at least 1-5/8 inches. Framing steel shall be Grade 33, Type H, conforming to ASTM A1003/A1003M or Structural Grade 50, Type H, conforming to ASTM A653/A653 M and ASTM A1003/A1003M. The steel has a minimum G60 galvanized coating designation conforming to ASTM A653. For horizontal diaphragms the framing member thicknesses are limited to minimum 33 mils (No. 20 nominal gage) and maximum 54 mils (No. 16 nominal gage).

5.0 IDENTIFICATION

Sure-Board[®] Series 200S Structural Panels are identified by a label located on the top right and bottom left corners of the metal facing. This permanent label notes the INTERMAT company name, product name, IAPMO UES Mark of Conformity and this evaluation report number (ER-185). The sheathing board exposed face has identification indicating the sheathing type (James Hardie Backer Board 500, Plycem, Armoroc, or Magnum Board).

6.0 SUBSTANTIATING DATA

Data in accordance with the IAPMO-UES Evaluation Criteria for Composite Steel Sheet and Noncombustible Sheathing Panels (EC 012-2016), Adopted January 2016 and an IAPMO Uniform ES approved quality control manual. Test results are from laboratories in compliance with ISO/IEC 17025.

7.0 CONTACT INFORMATION

INTERMAT

2045 Placentia Avenue Costa Mesa, California 92627 <u>www.sureboard.com</u> <u>support@sureboard.com</u>

8.0 STATEMENT OF RECOGNITION

This evaluation report describes the results of research carried out by IAPMO Uniform Evaluation Service on Sure-Board[®] Series 200S Structural Panels to assess conformance to the codes and standards shown in Section 1.0 of this report and documents the product's certification.

Srian Derber

Brian Gerber, P.E., S.E. Vice President, Technical Operations Uniform Evaluation Service

Richard Beck, PE, CBO, MCP Vice President, Uniform Evaluation Service

GP Russ Chaney CEO, The IAPMO Group

For additional information about this evaluation report please visit <u>www.uniform-es.org</u> or email at <u>info@uniform-es.org</u>

Revised: 12/12/2016

Valid Through: 12/31/2017

Span Rating,	Nominal	Allowable Strength	Factored Resistance	Allowable
(inches) (o.c).	Strength	(ASD)	(LRFD)	Concentrated Load,
	(psf)	(psf)	(psf)	LBF
24 maximum	435	215	260	2,000

For SI: 1 inch = 25.4 mm, 1 psf = 47.88 Pa, 1 lbf = 4.448 N

Notes

- 1. Maximum allowable strength for panels supported at 24 inches on center is 100 PSF for a deflection limit of L/360.
- 2. Panels are capable of supporting an allowable concentrated load of 2,000 lbs. within the deflection limit of L/360 on properly designed and constructed framing members.
- 3. Series 200 panels installed for floors shall include minimum No. 20 gage (0.033 inch) thick steel sheets. Series 200 panels installed for roofs shall include minimum No. 22 gage (0.027 inch) thick steel sheets.

TABLE 2 NOMINAL SHEAR STRENGTH FOR BLOCKED HORIZONTAL DIAPHRAGMS, LBS/FT SURE-BOARD® SERIES 200S STRUCTURAL PANELS

Screw Spacing, inches		Nominal	Allowable	e Strength,(ASD)	Factored F	Resistance, (LFRD)
Panel Edge	Field	Strength, (R _n)	Seismic Wind/All Oth		Seismic	Wind/All Others
2	6	2,770	1,110	1,380	1,660	1,800
3	6	2,730	1,090	1,360	1,640	1,770
4	6	1,980	790	990	1,190	1,290
6	6	1,320	530	660	790	860

For SI: 1 inch = 25.4 mm, 1 lbf/ft = 14.5939 N/m

The equation Eq. (1) shall be used to estimate the mid-span deflection of Sure-Board's MgO and fiber-cement simple span diaphragms:

$$\Delta_{D} = \omega_{1}^{4} \frac{5\nu L^{3}}{8E_{s}A_{c}b} + \omega_{2}\omega_{3} \frac{\nu L}{Gt} + \omega_{2}^{0.95}\omega_{3} \left(\frac{\nu}{2\frac{\beta}{\beta_{f}}}\right)^{2} + \frac{\sum_{i=1}^{n} (\Delta_{c_{i}}X_{i})}{2b}$$
Eq. (1)

Where,

 Δ_D = mid-span diaphragm deflection, in. (mm)

v = diaphragm shear, lb/in. (N/mm)

L = width of the diaphragm (perpendicular to load direction), in. (mm)

 E_s = modulus of elasticity of steel, 29,500,000 psi (203,400 MPa)

 A_c = gross cross sectional area of the chord members, in. (mm)

b = depth of the diaphragm (parallel to load direction), in. (mm)

G = shear modulus of steel, 11,300,000 psi (77,910 MPa)

t = design thickness of the sheet steel in structural panel, in. (mm)

 t_{joist} = joist design thickness, in. (mm)

 β = basic sheathing inelastic deflection parameter, lb/in³ (N/mm³) (62.5 lb/in³ for MgO; 49.4 lb/in³ for HB500; 70.9

lb/in³ for Plycem and Armoroc)

 β_f = pin connection deformation factor

$$= 0.8(d_8/d)$$

 d_8 = diameter of a No. 8 fastener, in. (mm)

d = diameter of fastener, in. (mm)

Valid Through: 12/31/2017

Orig

Originally Issued: 12/18/2015 Revised: 12/12/2016

 Δ_{ci} = deformation attribute to the ith chord splice, in. (mm)

 X_i = distance from the ith chord splice to the nearest support, in. (mm)

n = number of chord splices

- ω_1 = adjustment factor for aspect ratios greater than 2:1
 - = 0 for $L/b \le 2.0$
 - = 1 2/(L/b)) when L/b > 2.0
- ω_2 = adjustment factor for fastener spacing greater than 6 in. (152 mm) = s/6, where s = actual spacing of fasteners
- ω_3 = adjustment factor for framing design thickness different from 0.0346 in. (0.8788 mm)
 - $= 0.0346/t_{joist} (0.8788/t_{joist})$

TABLE 3 ALLOWABLE WIND UPLIFT LOADS FOR SURE-BOARD[®] SERIES 200S STRUCTURAL PANELS^{1,2}

C	FS Specifica	tions		Allov	vable W	ind Uplift,	(ASD)	Allo	wable W	ind Uplift,(ASD)					
					(psf)			((psf)	-					
		24 (in	ch) (o.c),			16 (inch) (o.c)										
		Joist	Spacing			Joist	Spacing									
			Scre	w Size			Scre	ew Size								
Designated	Design	Fy	Fu	No. 6	No. 8	No. 10	No. 12	No. 6	No. 8	No. 10	No. 12					
Thickness,	Thickness,	ksi	ksi													
mils	in.															
33	0.0346	33	45	30.5	36.2	41.9	47.6	45.8	54.3	62.9	71.5					
43	0.0451	33	45	39.5	47.2	54.6	62.1	59.3	70.7	81.9	93.2					
54	0.0566	50	65	63.5	63.5	79.4	79.4	95.3	95.3	119.1	119.1					
68	0.0713	50	65	63.5	63.5	79.4	79.4	95.3	95.3	119.1	119.1					
97	0.1017	50	65	63.5	63.5	79.4	79.4	95.3	95.3	119.1	119.1					
118	0.1242	50	65	63.5	63.5	79.4	79.4	95.3	95.3	119.1	119.1					
	05.4		10.11.4	· · · ·												

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psf = 47.88 Pa, 1 psi = 6.89 kPa

¹ Allowable wind uplift based on screw spacings of 6 inches on center maximum at all panel edges and 12 inches on center maximum in the field/interior of the panels.

² If field/interior spacing is reduced from 12 inches on center, wind uplift may be proportionally increased.

Originally Issued: 12/18/2015

Revised: 12/12/2016

Valid Through: 12/31/2017

CALIFORNIA SUPPLEMENT

EVALUATION SUBJECT: SURE-BOARD® SERIES 200S STRUCTURAL PANELS

REPORT HOLDER: Intermat 2045 Placentia Avenue Costa Mesa, California 92627 www.sureboard.com support@sureboard.com

CSI Division: 05-METALS CSI Section: 05160-Metal Framing Systems

1.0 SCOPE OF EVALUATION

1.1 Compliance with the following codes:

- 2016 and 2013 California Building Code[®] (CBC)
- 2016 and 2013 California Residential Code[®] (CRC)

1.2 Evaluated in Accordance With:

• EC-012-2013, adopted January 2016

1.3 Properties Evaluated:

Structural

ADDITIONAL REQUIREMENTS

2.0 USES

Uses are as set forth in Section 2.0 of ER-185. Additionally, the structural panels comply with or are alternatives to systems described in Sections 1507, 2304.7, and 2211 of the California Building Code (CBC) and Sections R503 and R803 of the California Residential Code[®] (CRC).

3.0 DESCRIPTION

The description of the panels and other components is as set forth in Section 3.0 of ER-185.

4.0 DESIGN AND INSTALLATION

4.1 Vertical (Gravity) Load Design

Design for vertical loads shall be as set forth in Section 4.1 of ER-185.

4.2 Horizontal (Wind and Seismic) Load Design

Design for horizontal loads shall be as set forth in Section 4.2 of ER-185. For applications regulated by DSA or OSHPD, horizontal diaphragm span-width ratios shall comply with CBC Section 1604A.3.7.

4.3 Installation

Installation requirements shall be as set forth in Section 2.0 of ER-185.

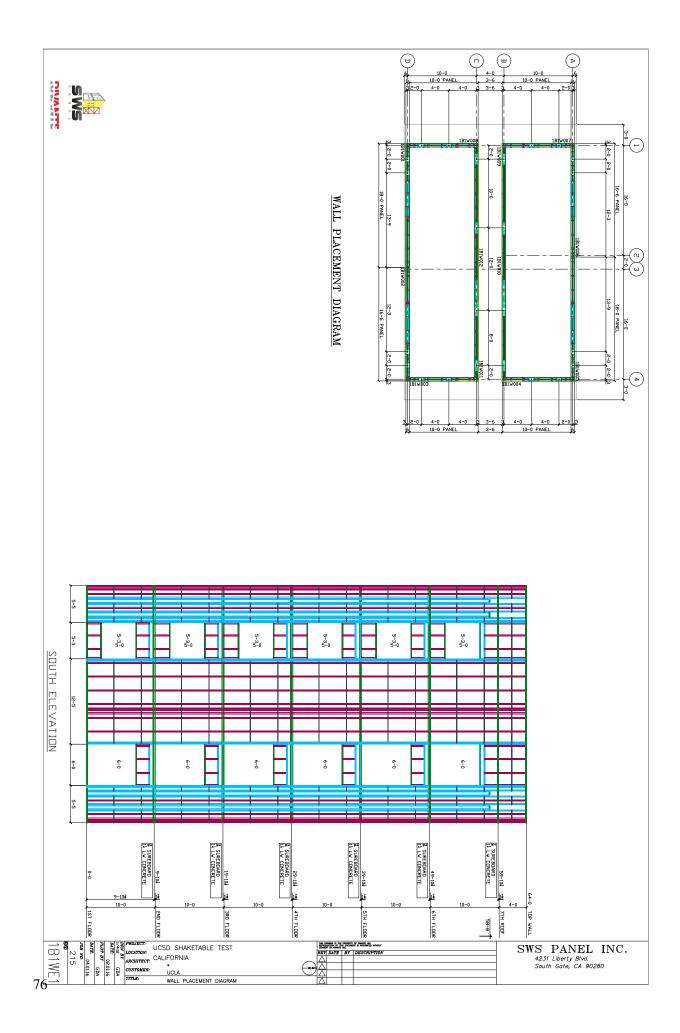
4.4 Special Inspection

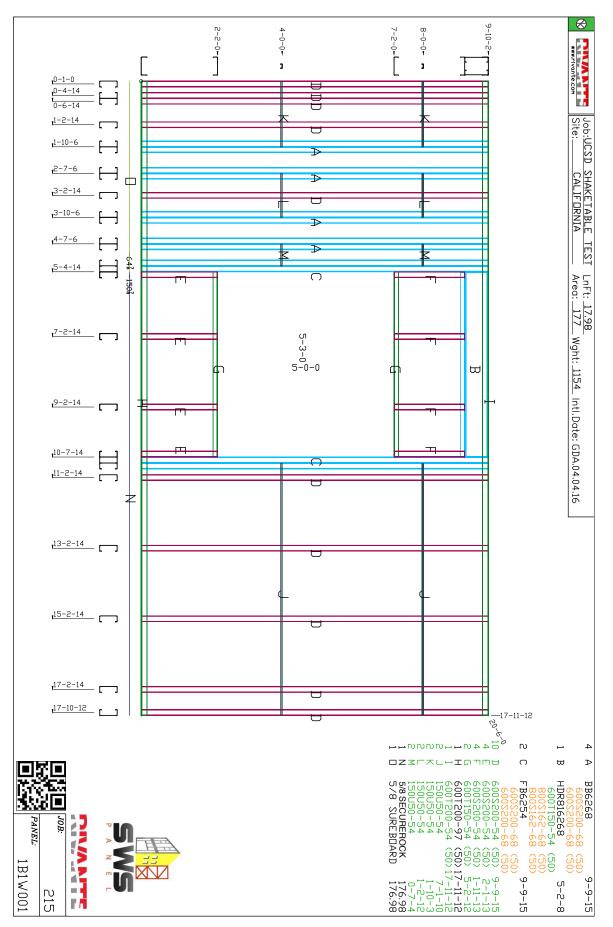
Special inspections shall be provided as set forth in Section 4.4 of ER-185.

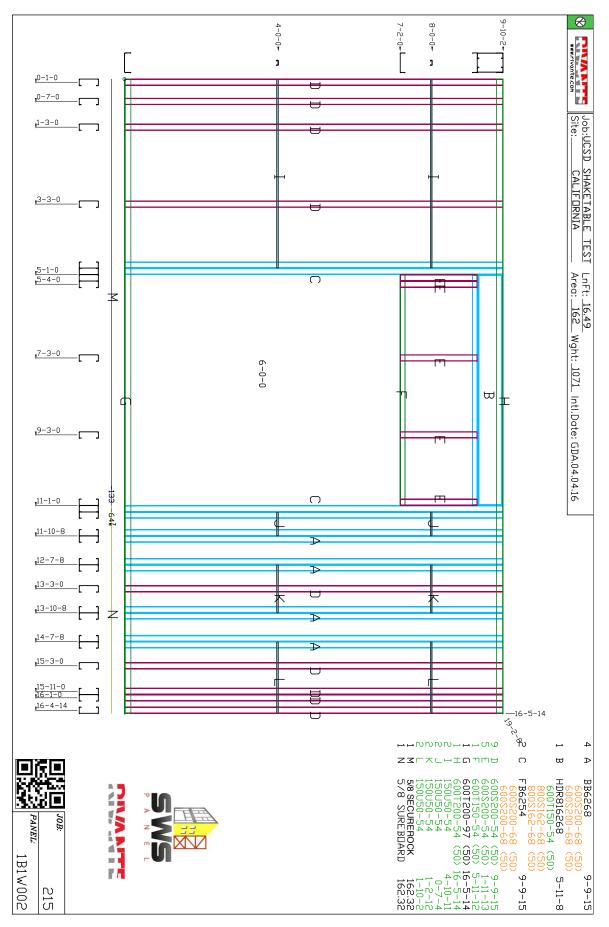
5.0 LIMITATIONS

The Sure-Board[®] Series 200S Structural Panels, described in this report, comply with the codes listed in Section 1.0 of this supplement, subject to the following limitations:

5.1 The limitations in Section 5.0 of ER-185 shall apply.

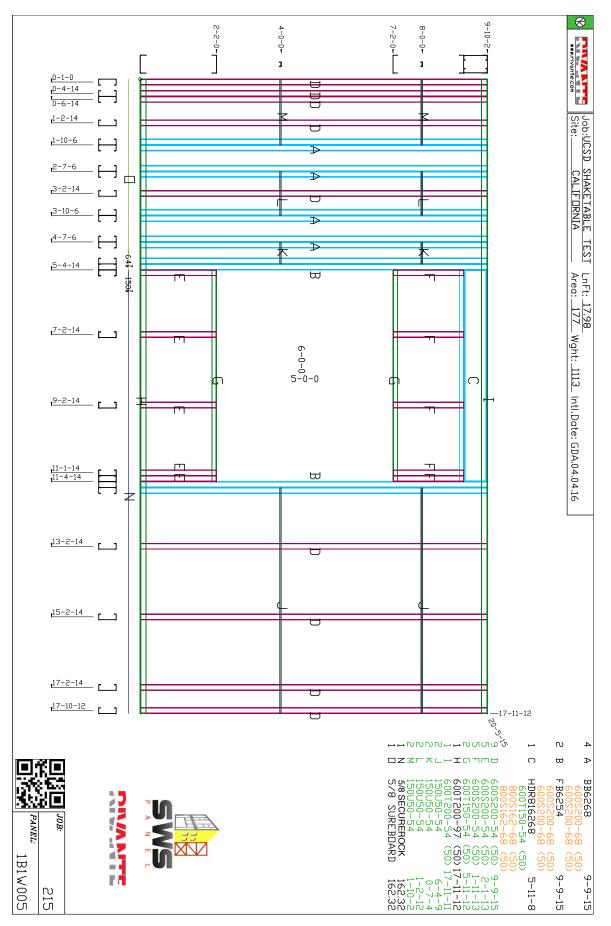

5.2 For applications regulated by DSA or OSHPD, structural calculations shall comply with CBC Section 1603A.3.

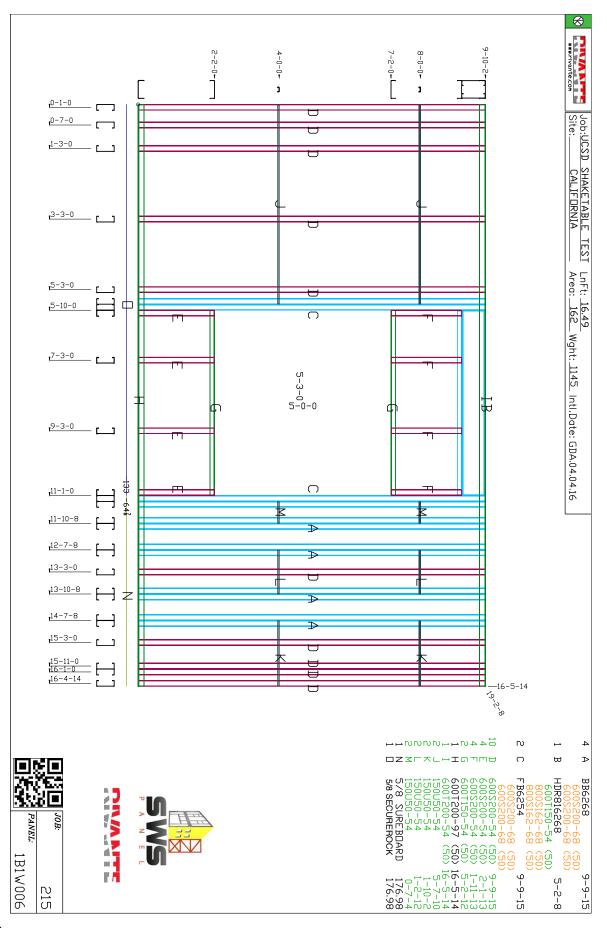

6.0 SUBSTANTIATING DATA

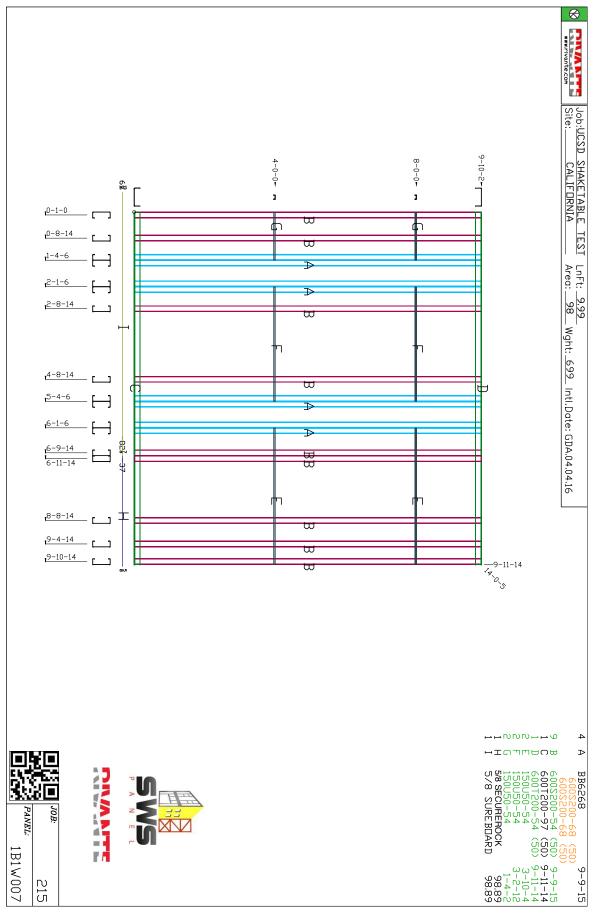

Data in accordance with the IAPMO-UES Evaluation Criteria for Composite Steel Sheet and Noncombustible Sheathing Panels (EC 012-2016), Adopted January 2016 and an IAPMO-UES approved quality control manual.

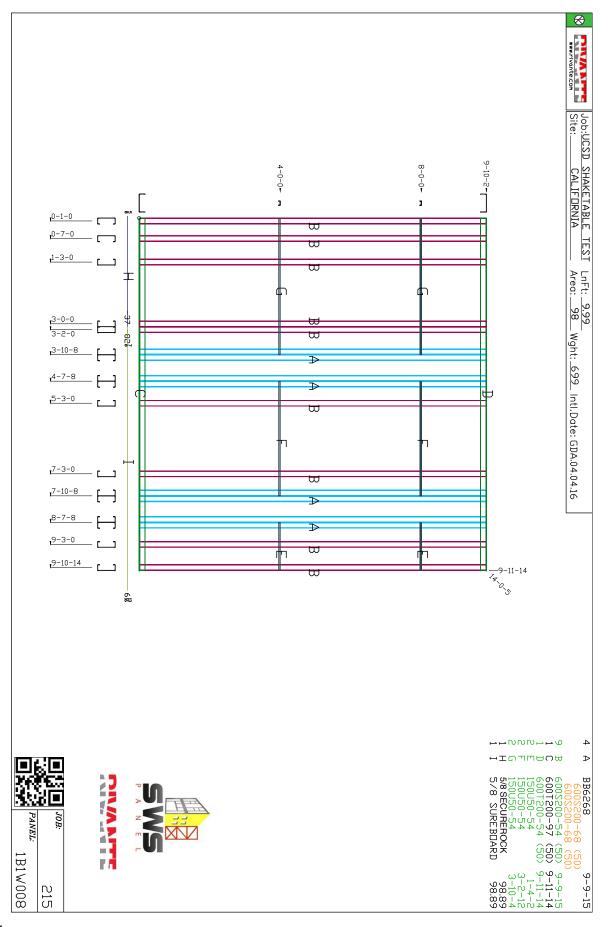
For additional information about this evaluation report please visit www.uniform-es.org or email at info@uniform-es.org

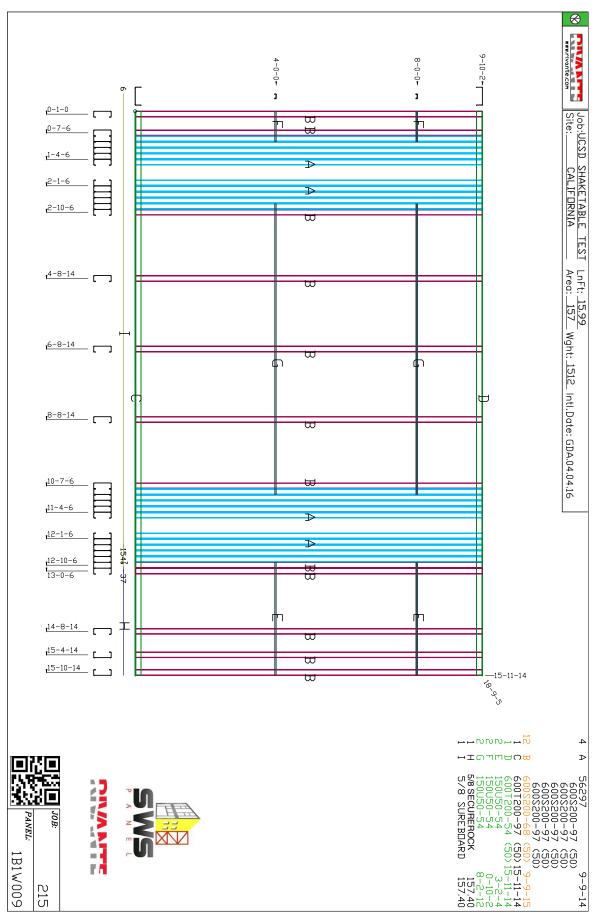

DRAWINGS OF PREFABRICATED PANELS

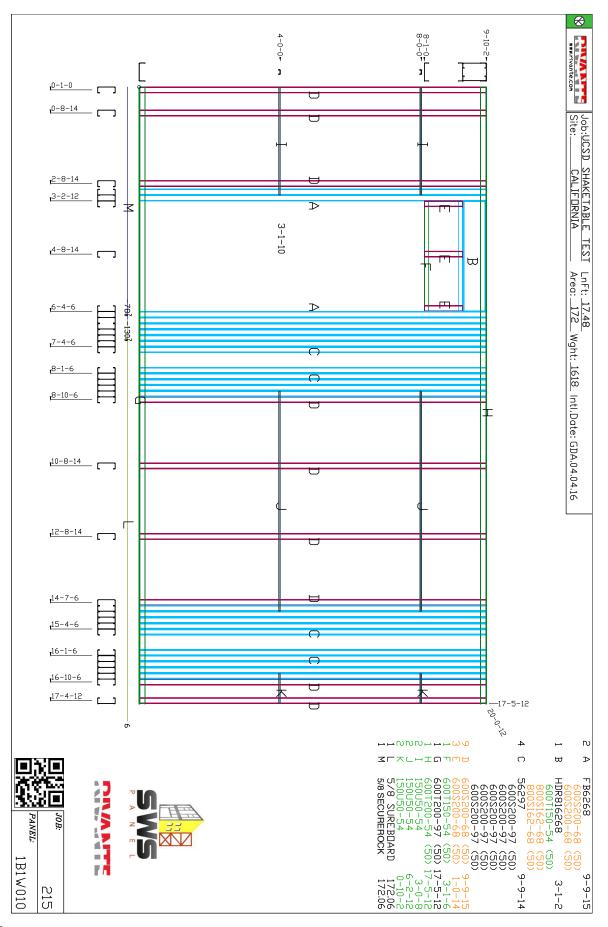


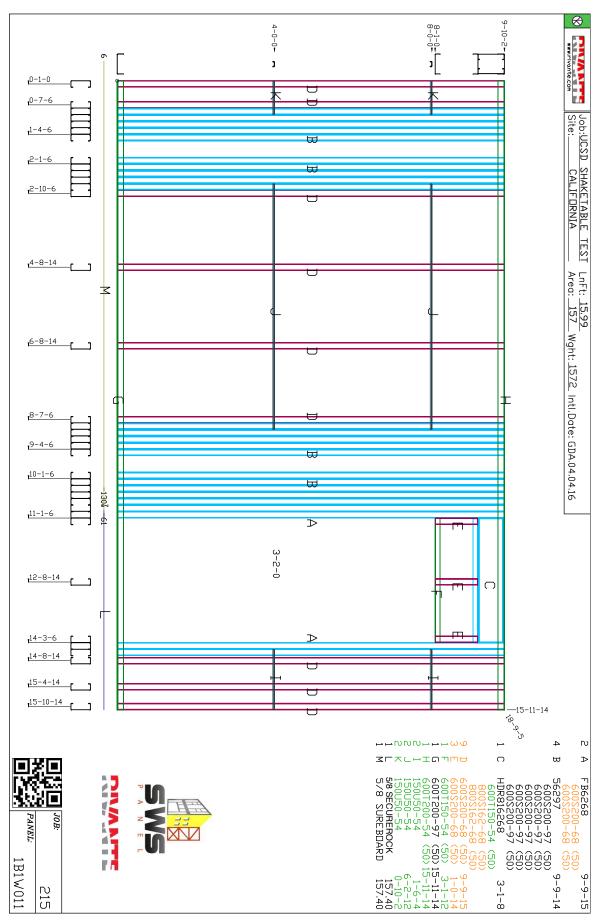


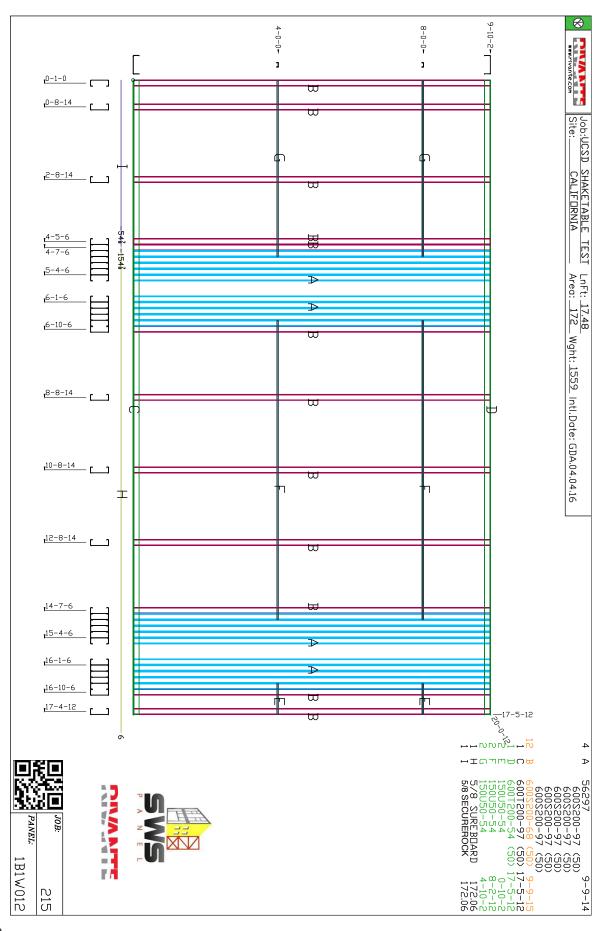


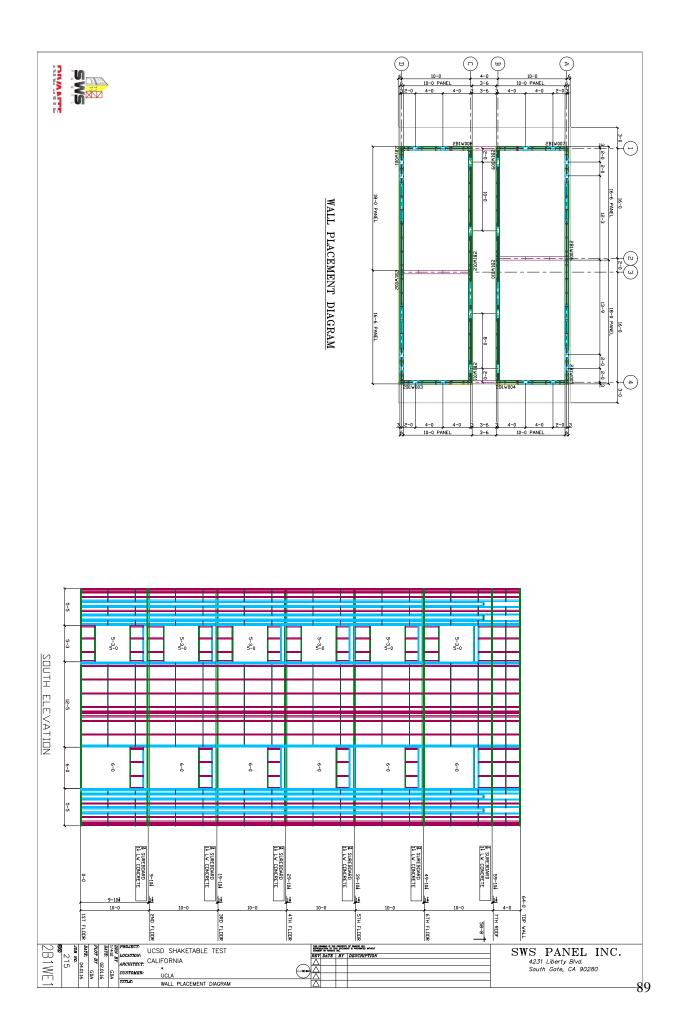


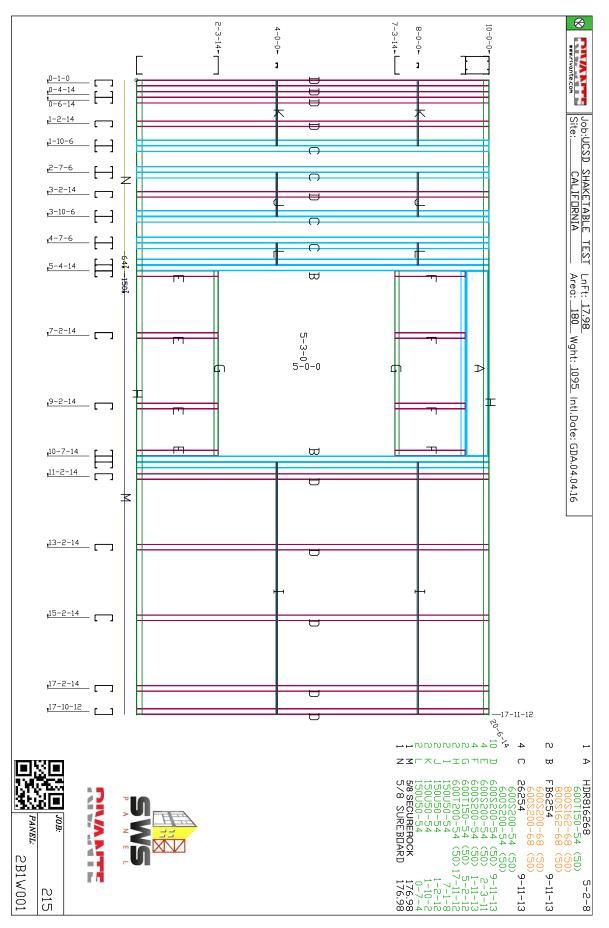


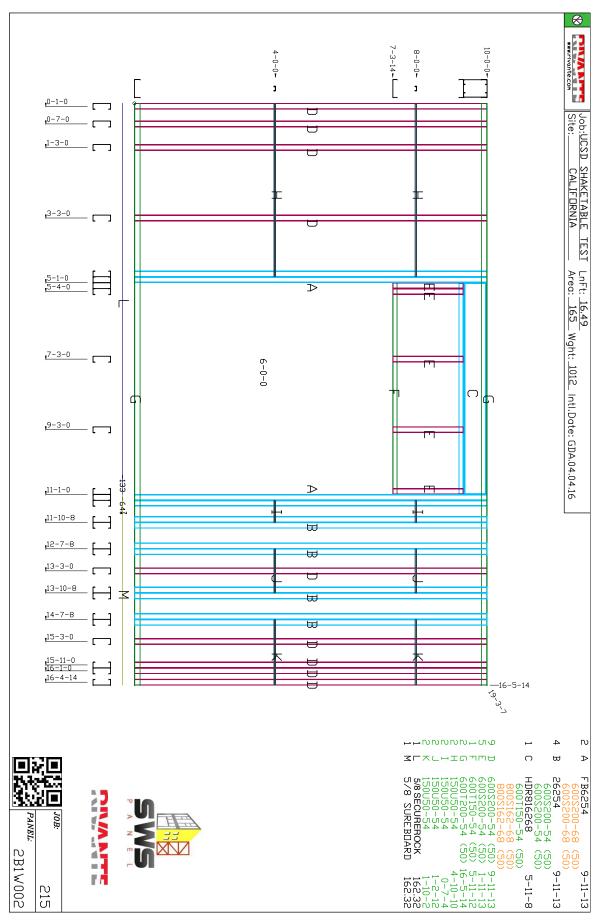


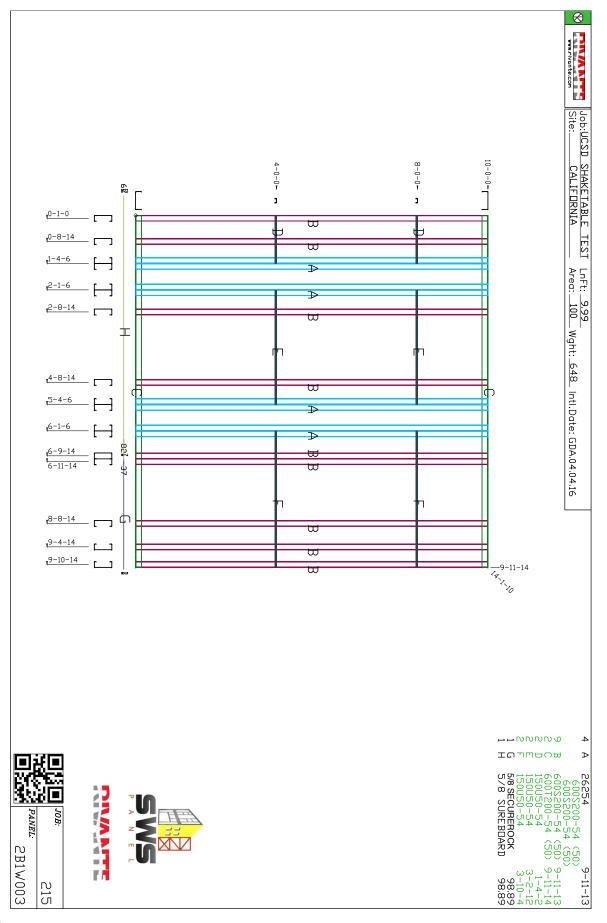


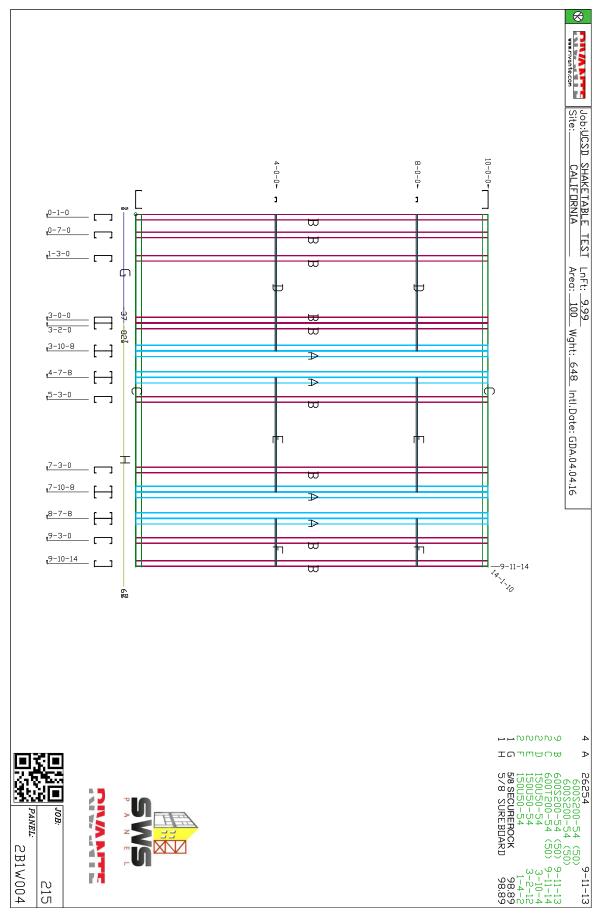


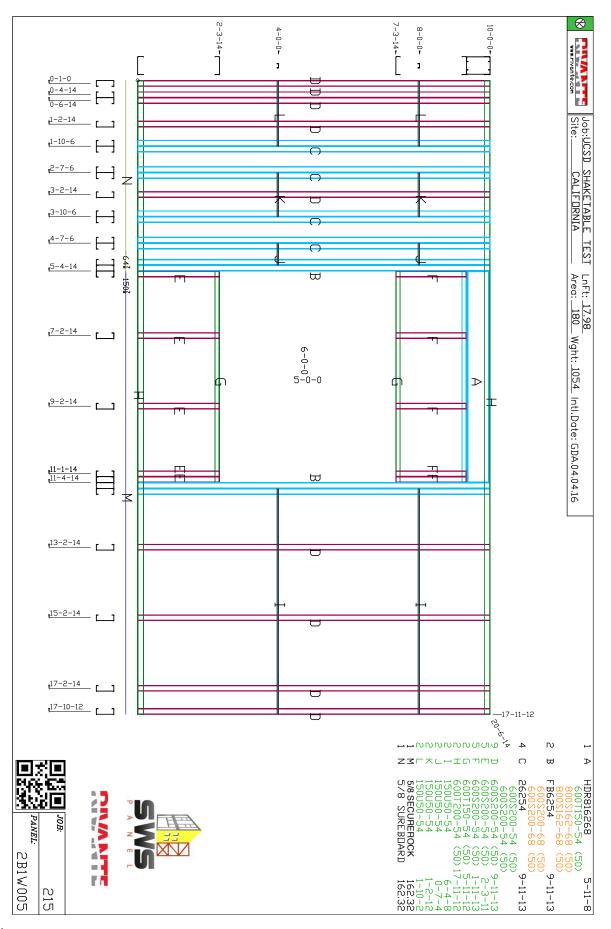


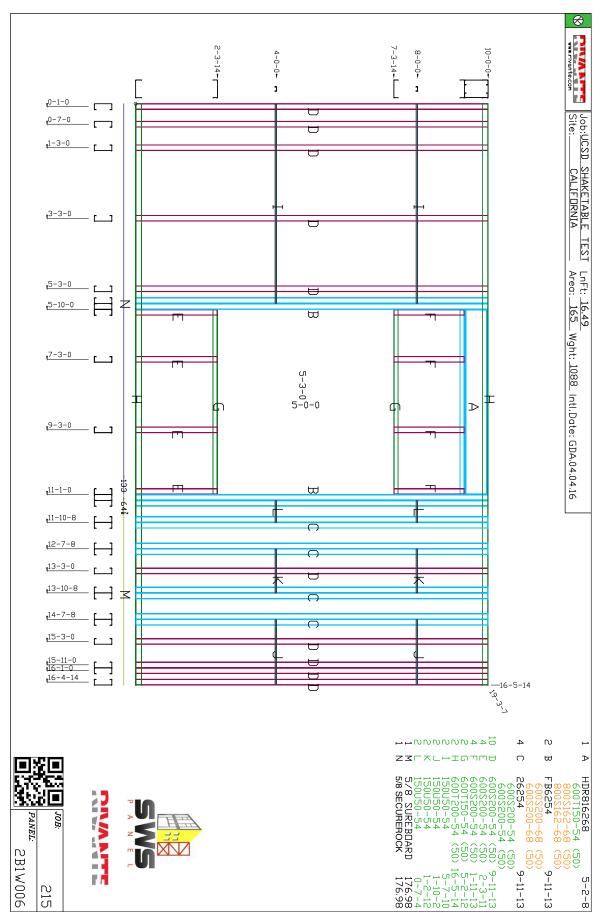


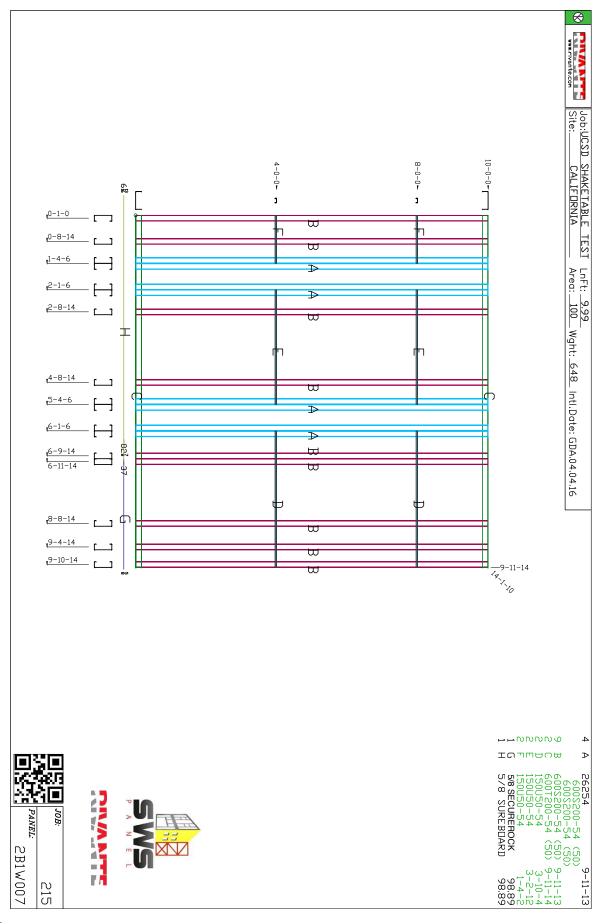


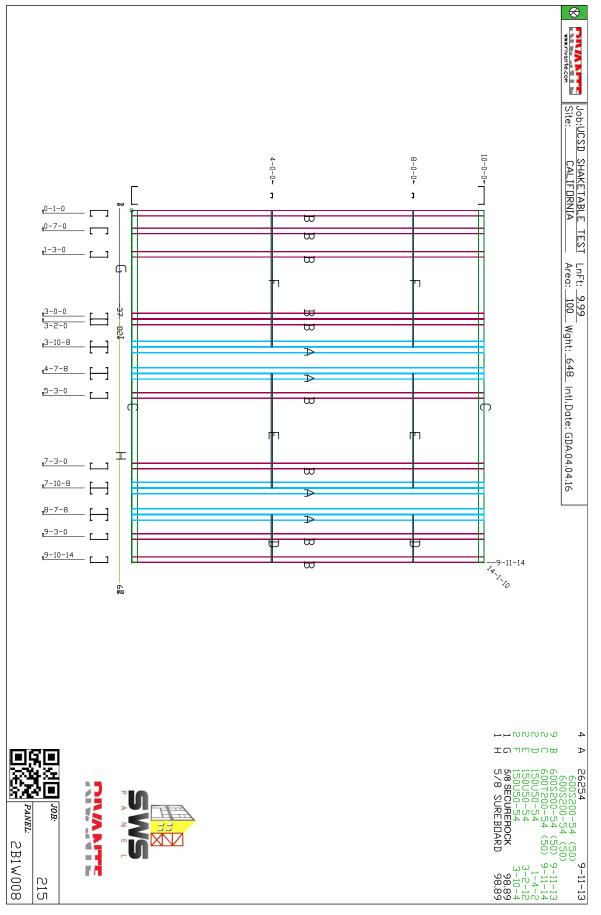


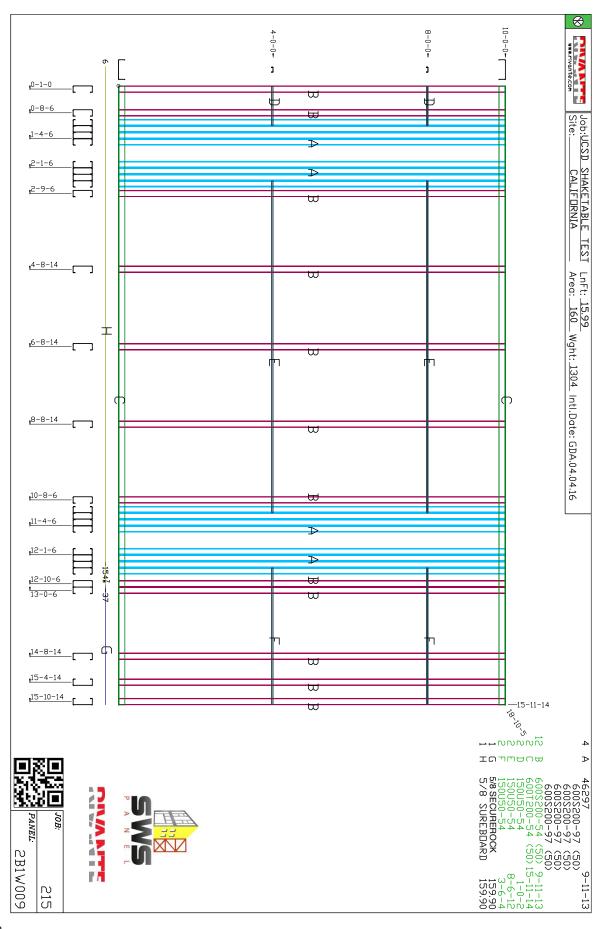


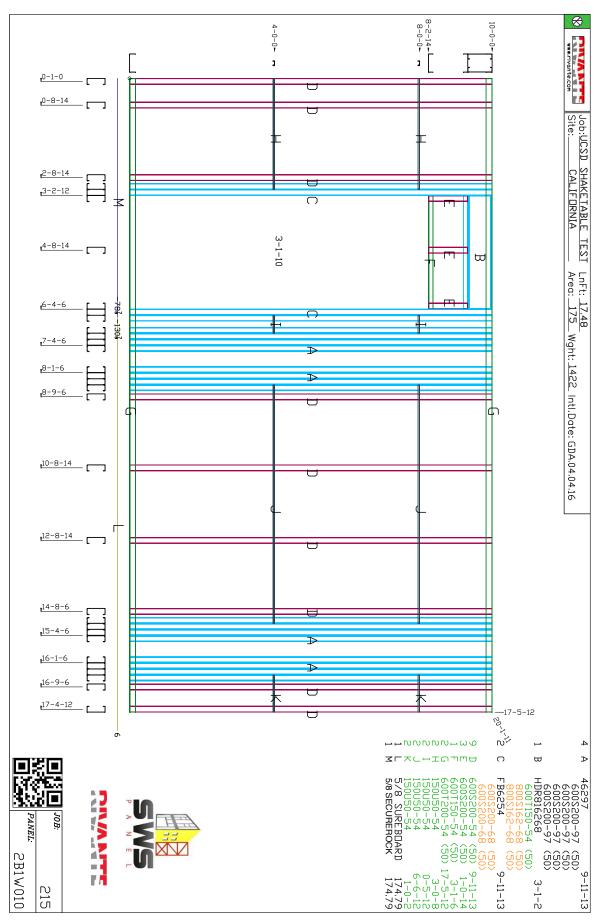


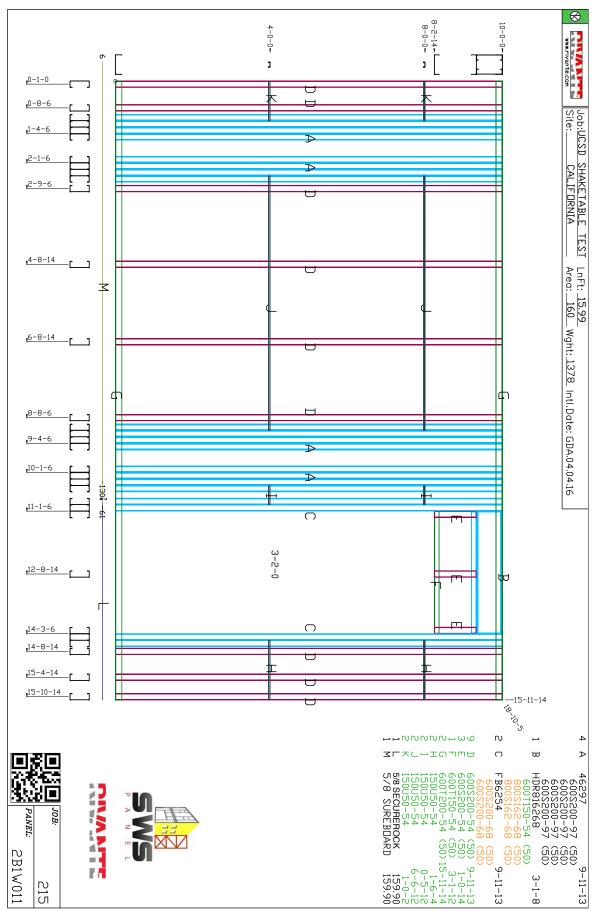


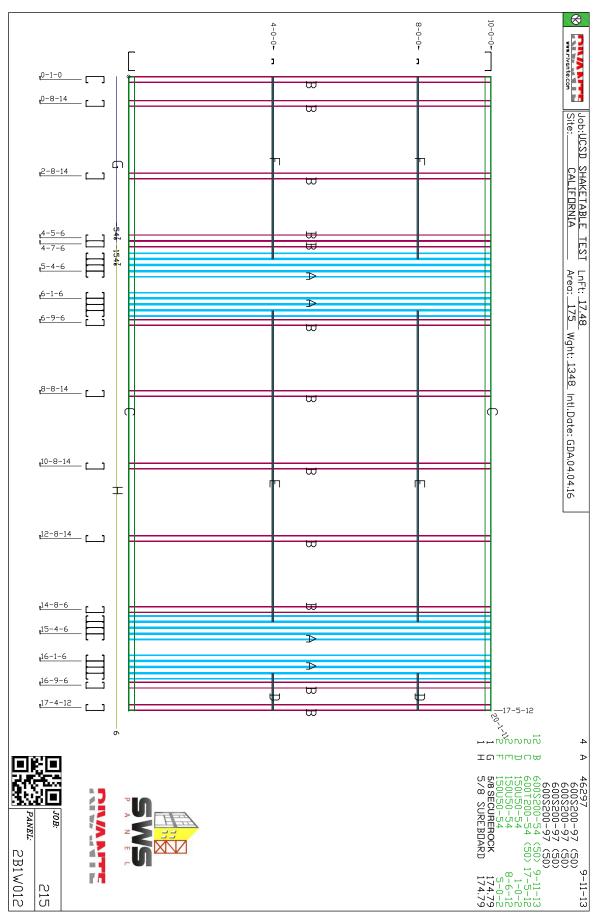


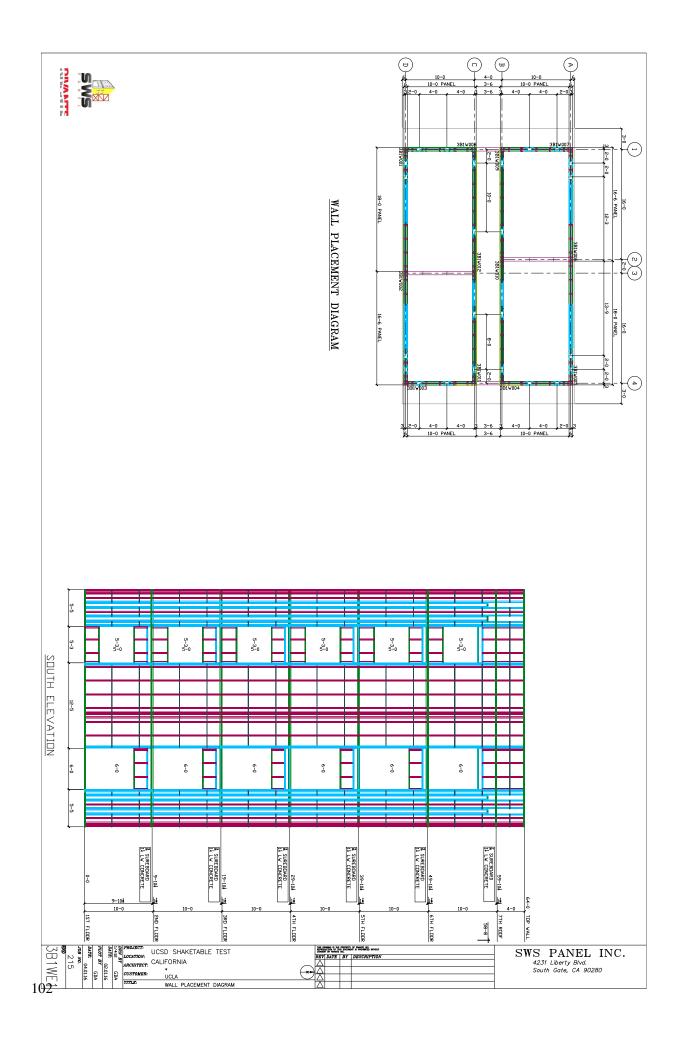


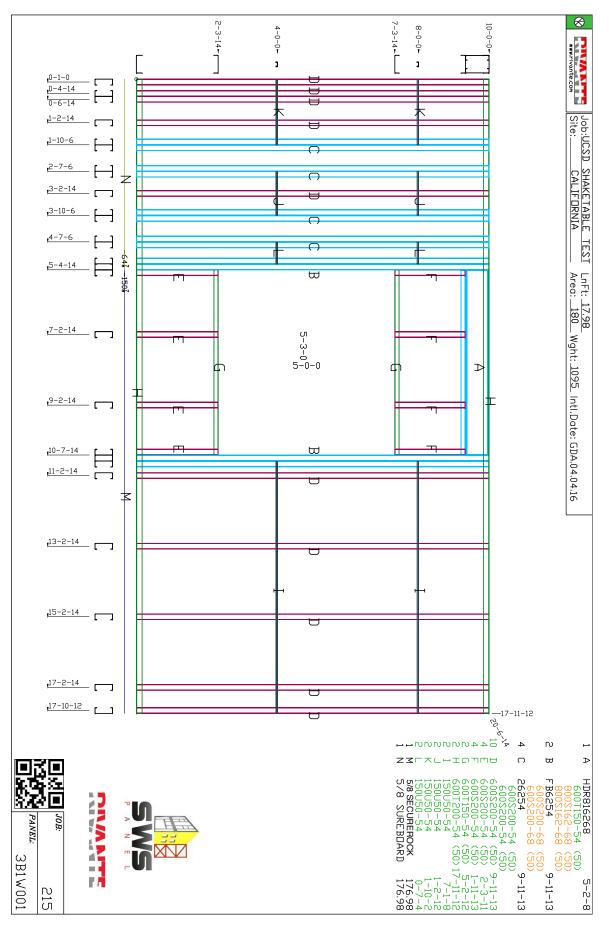


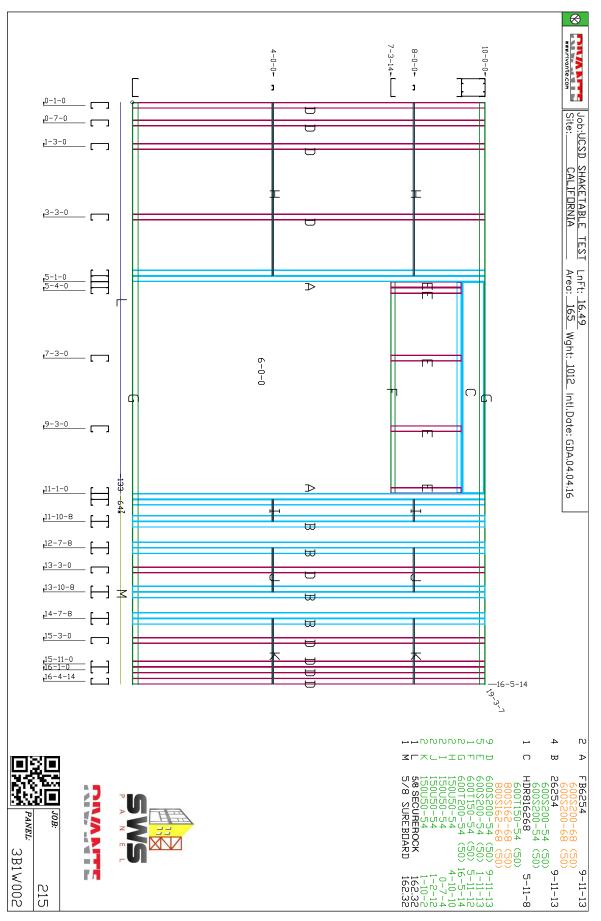


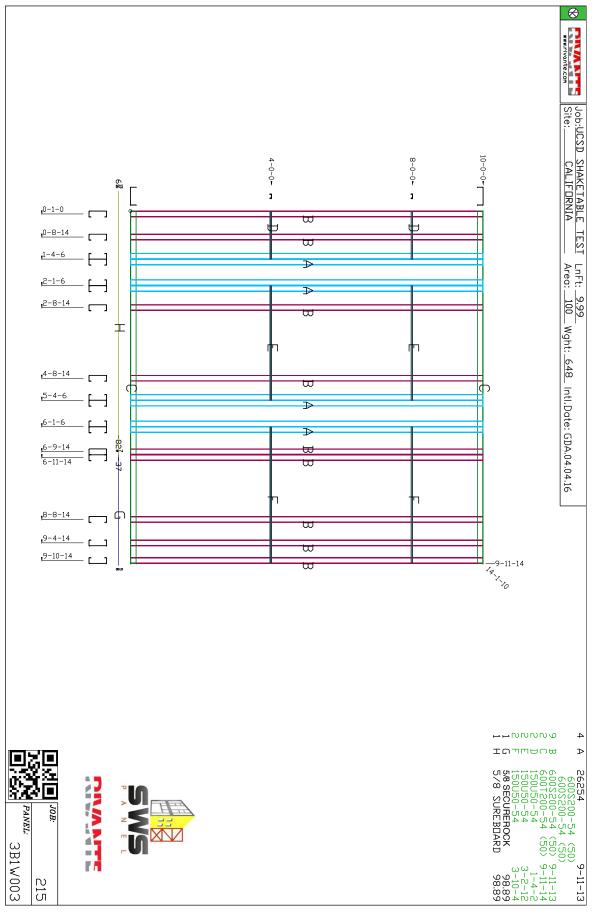


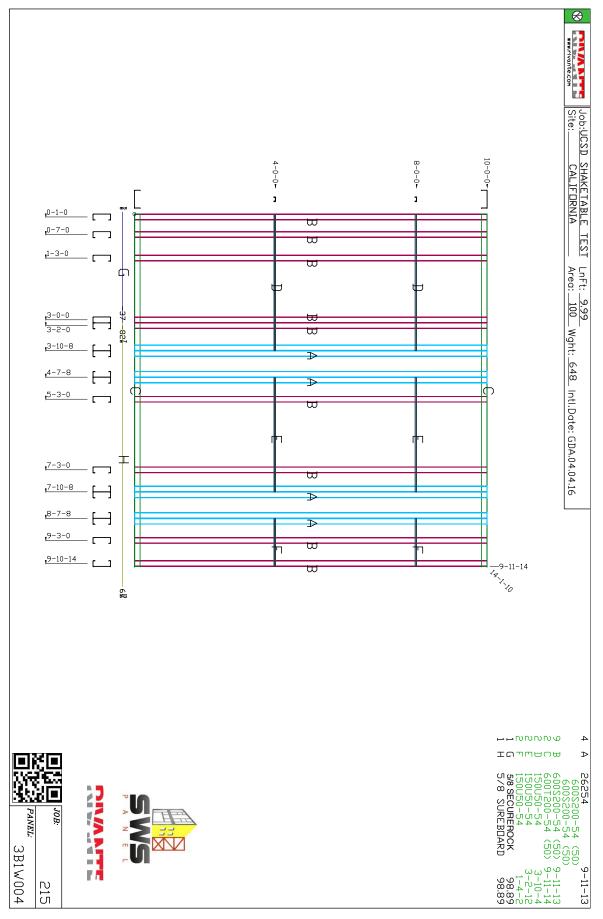


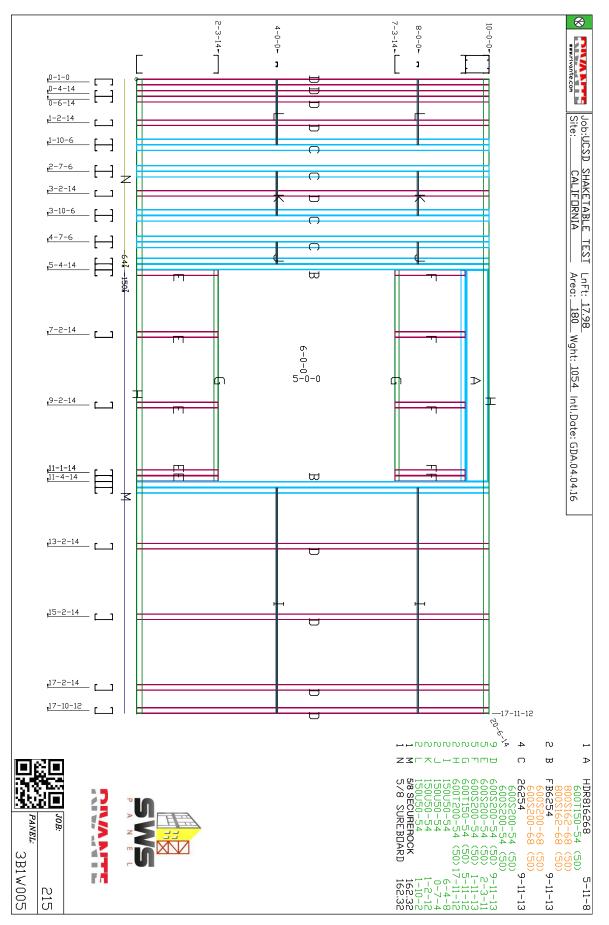


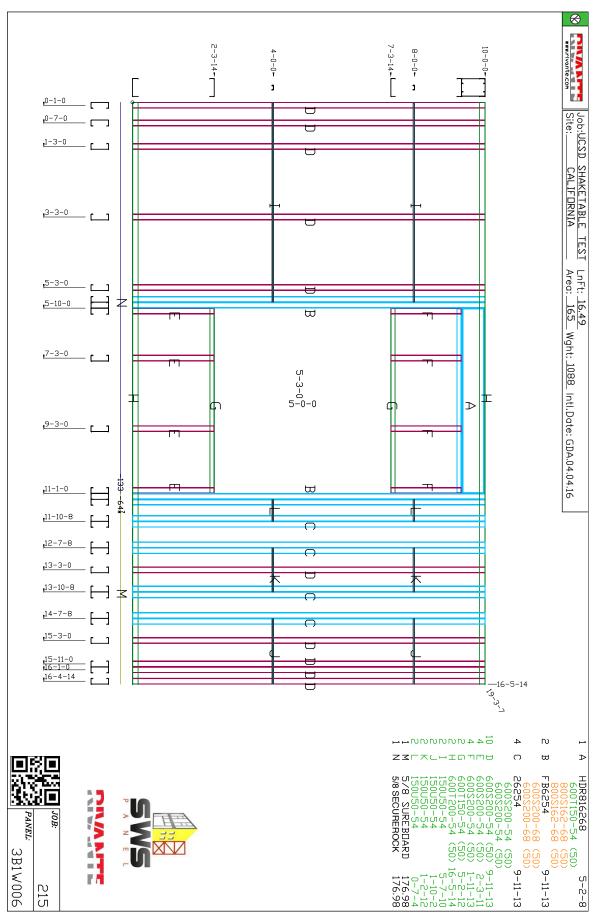


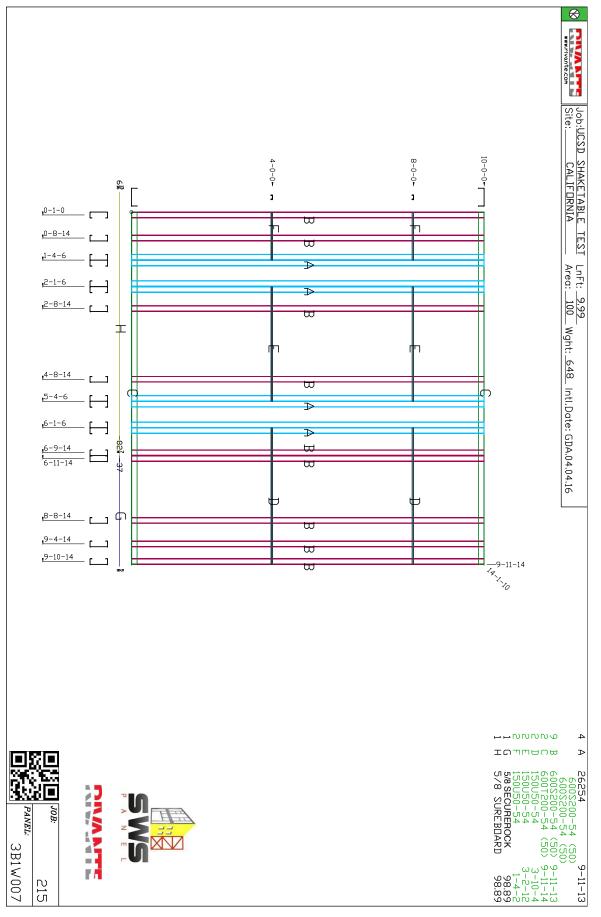


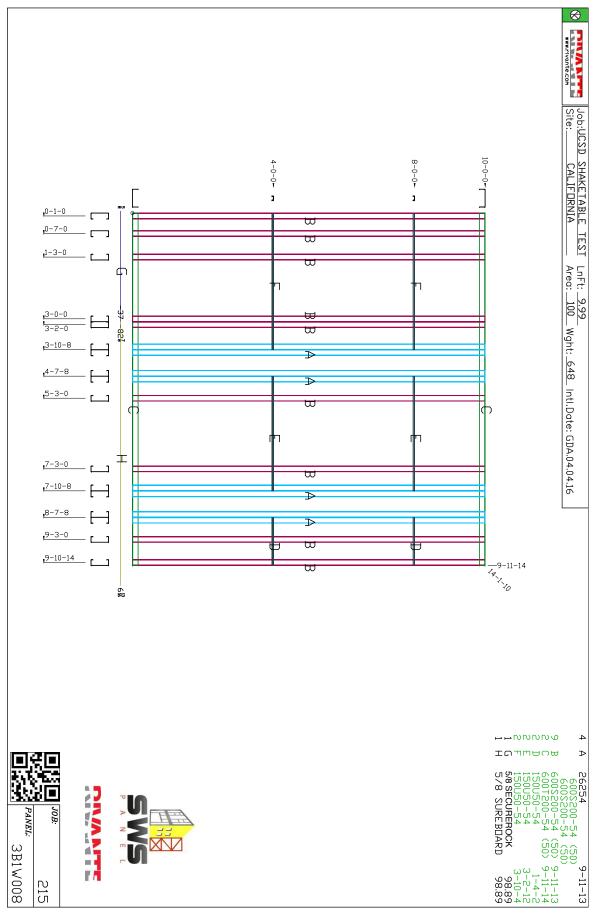


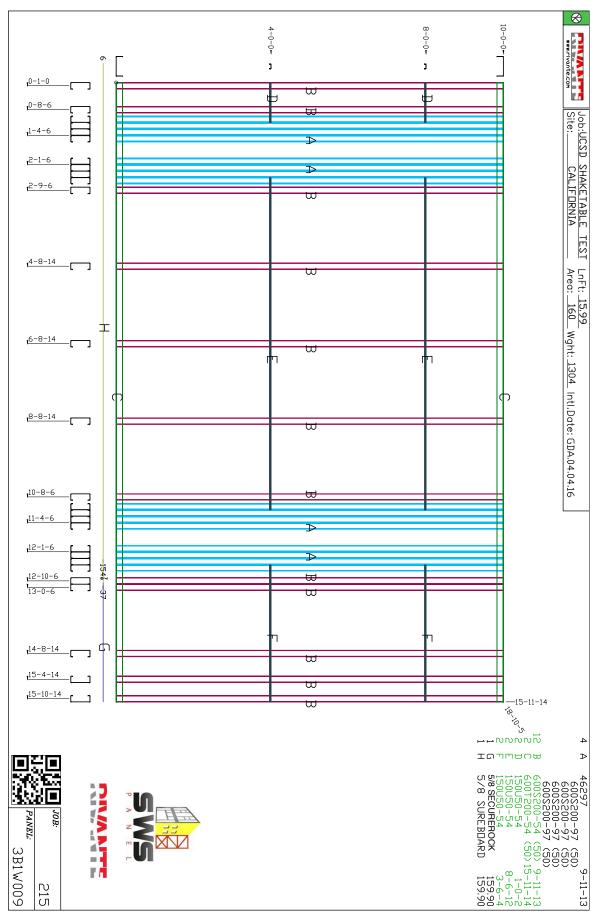


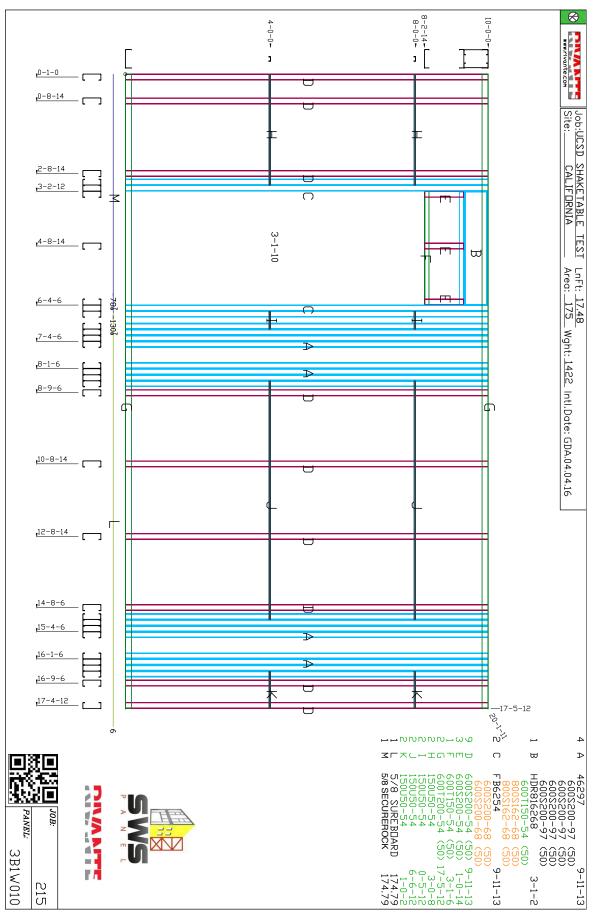


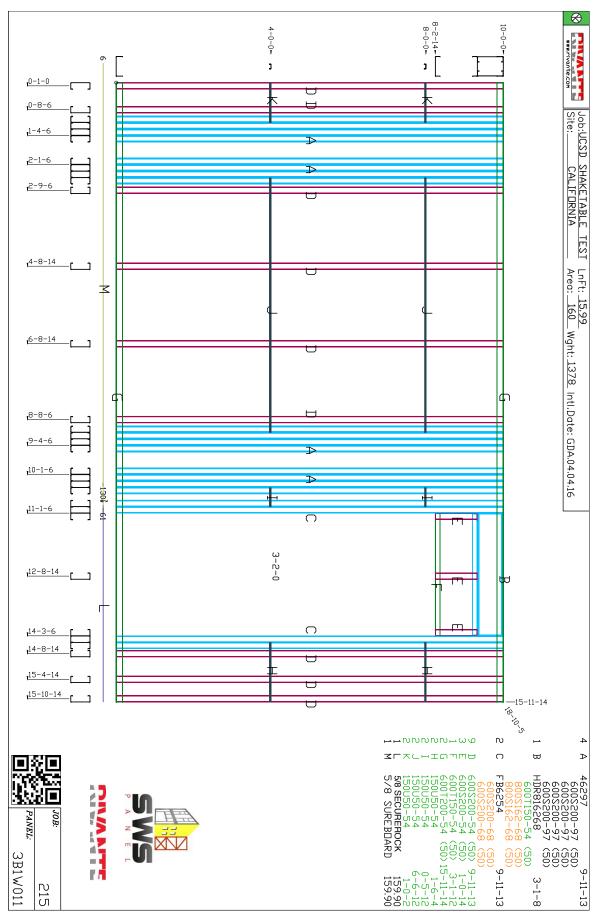


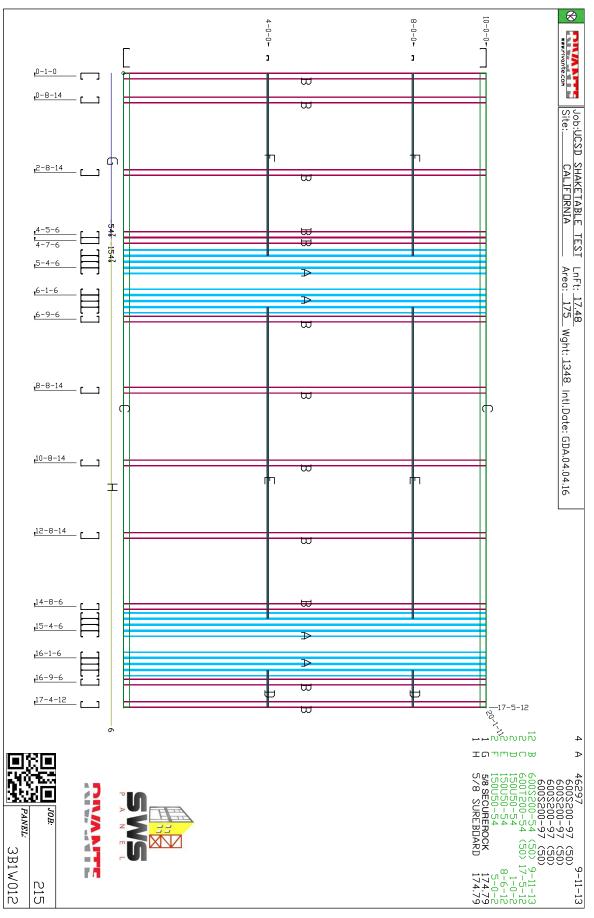


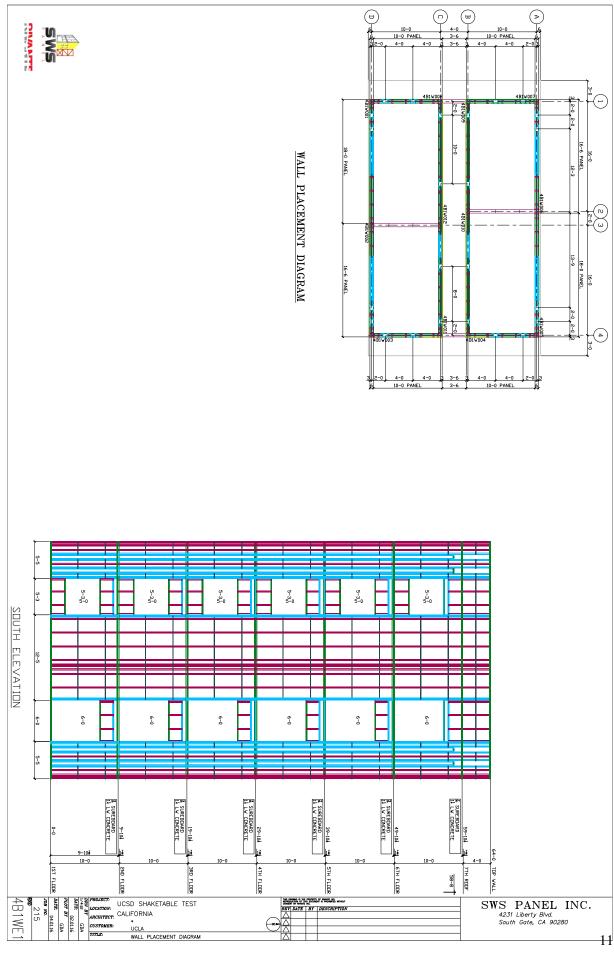


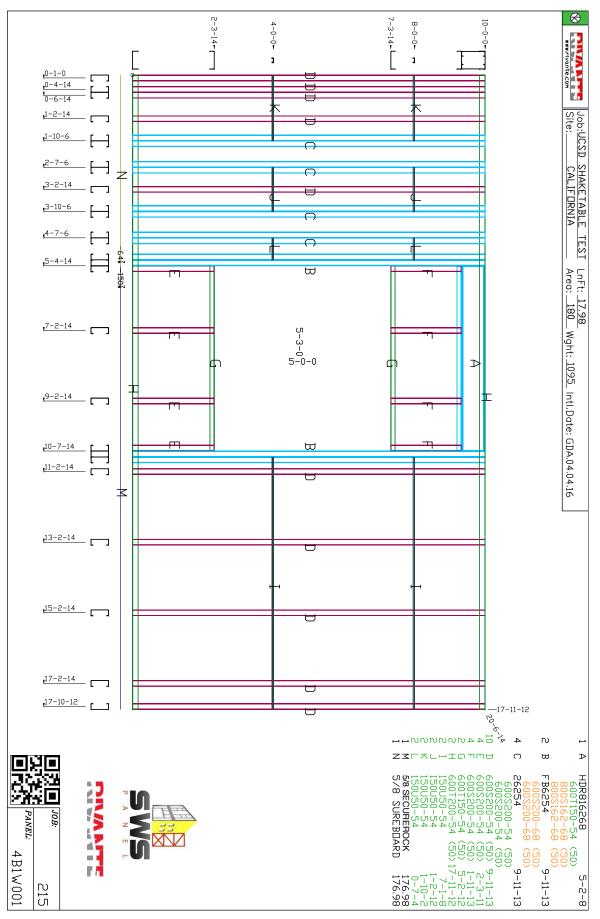


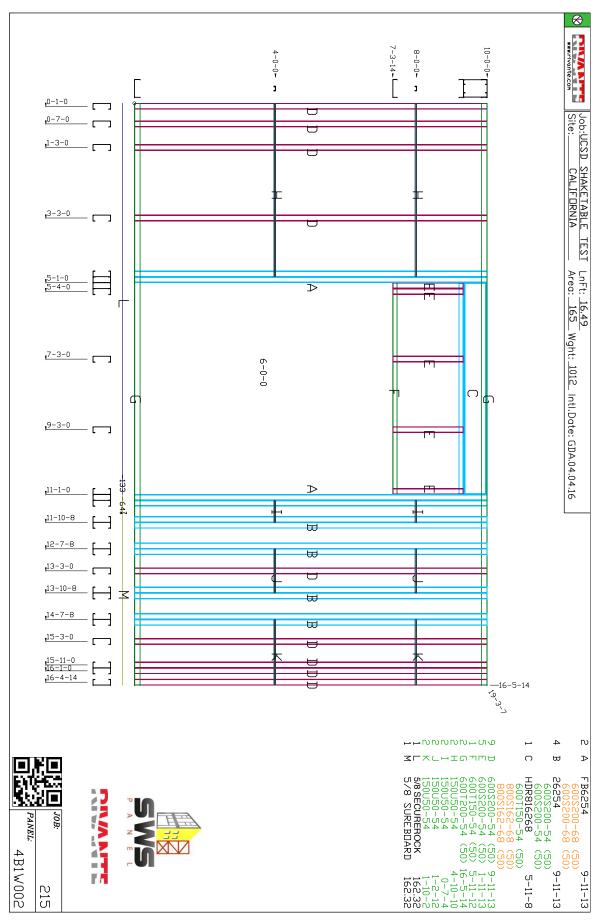


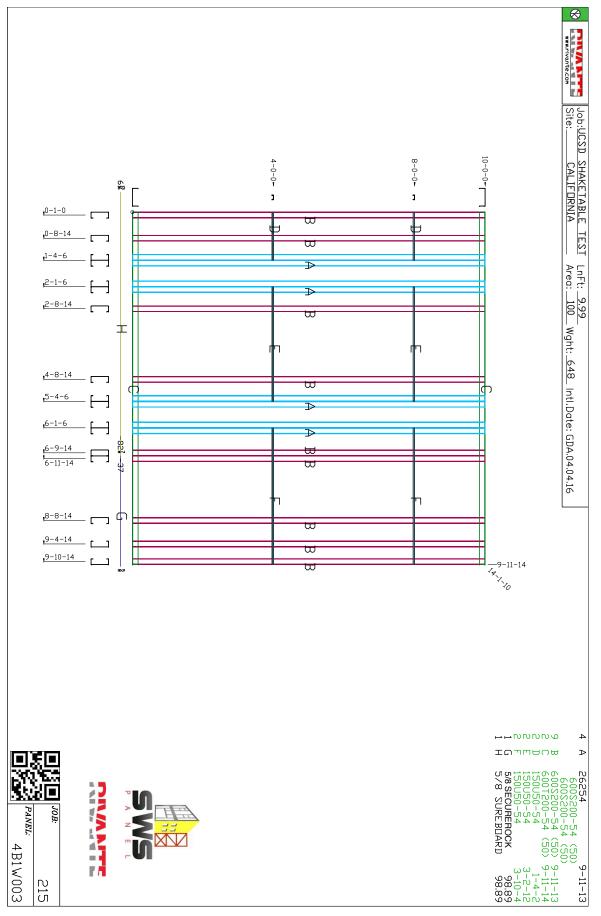


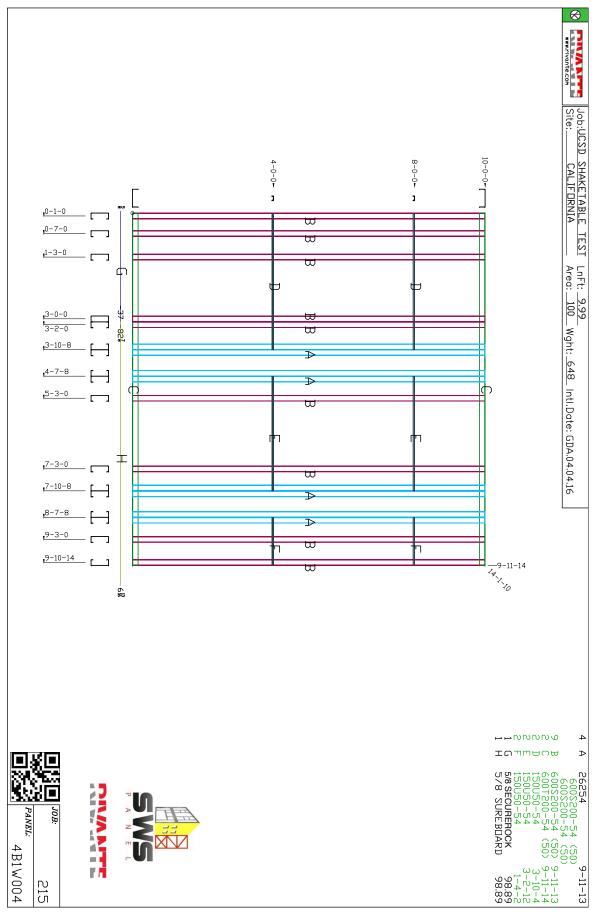


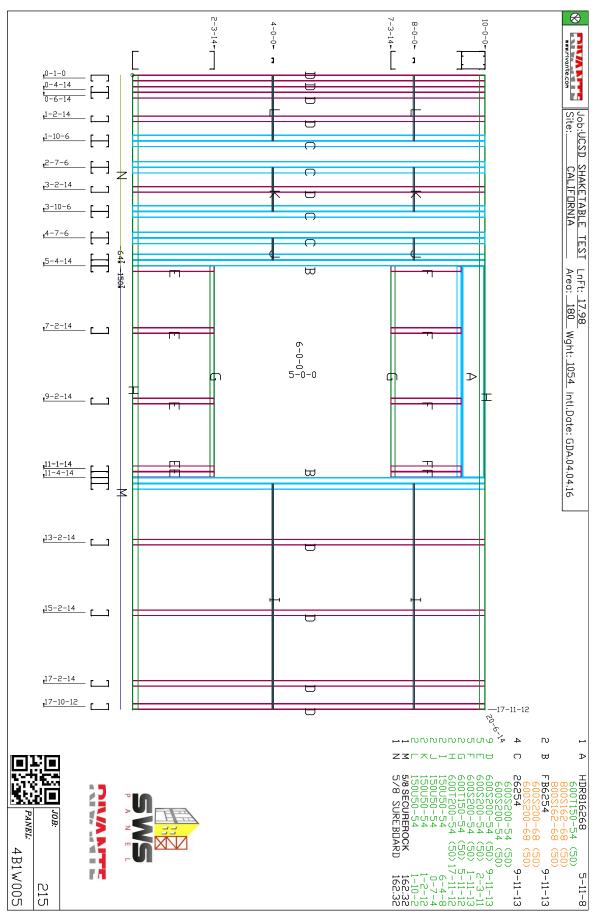


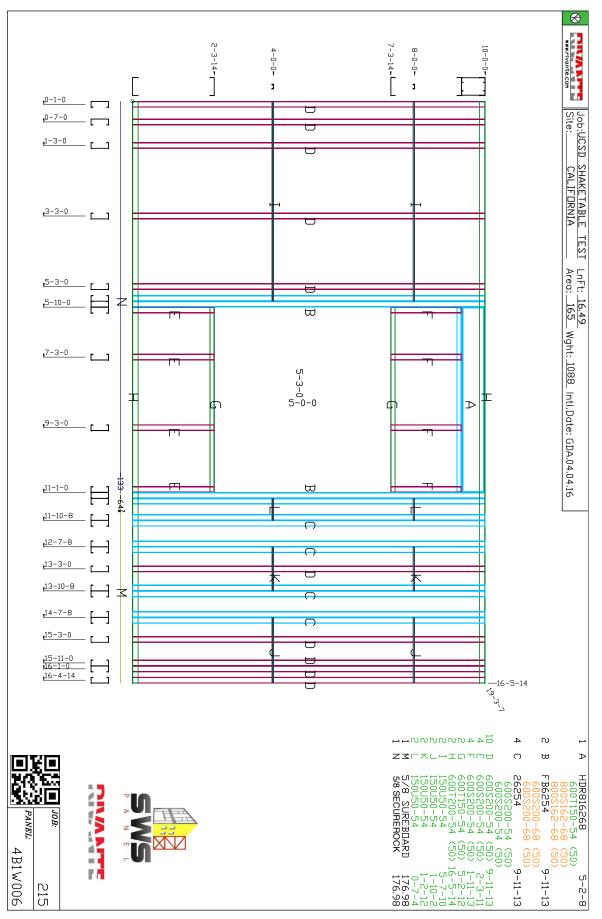


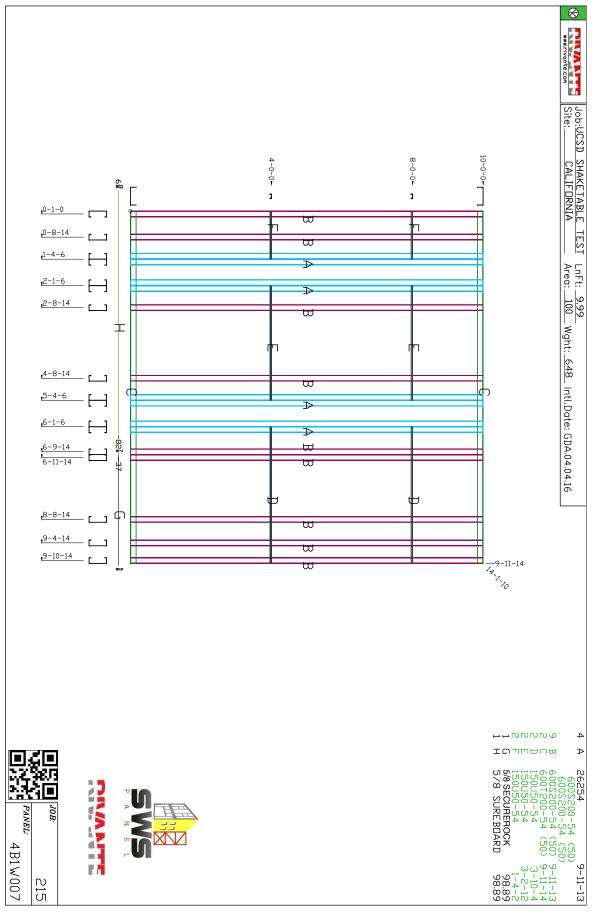


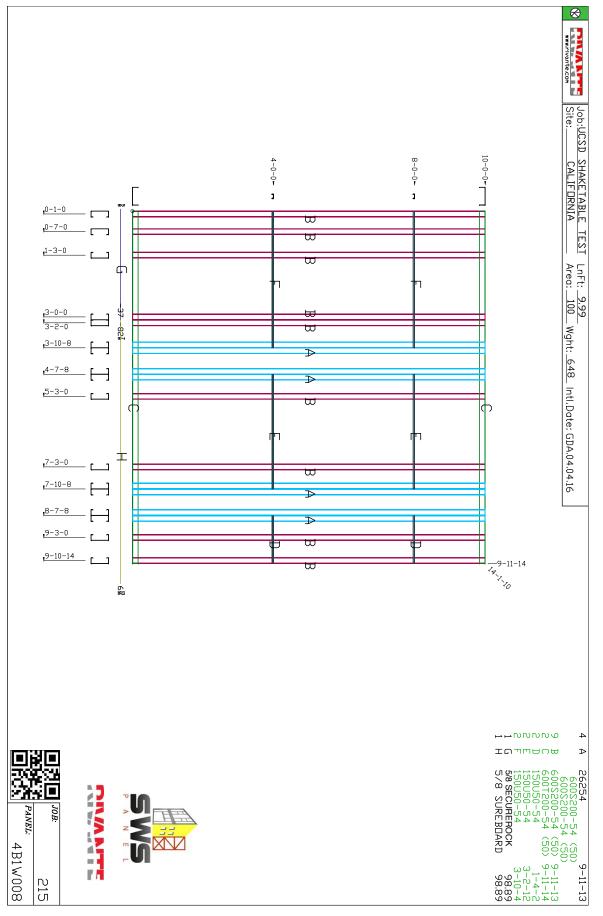


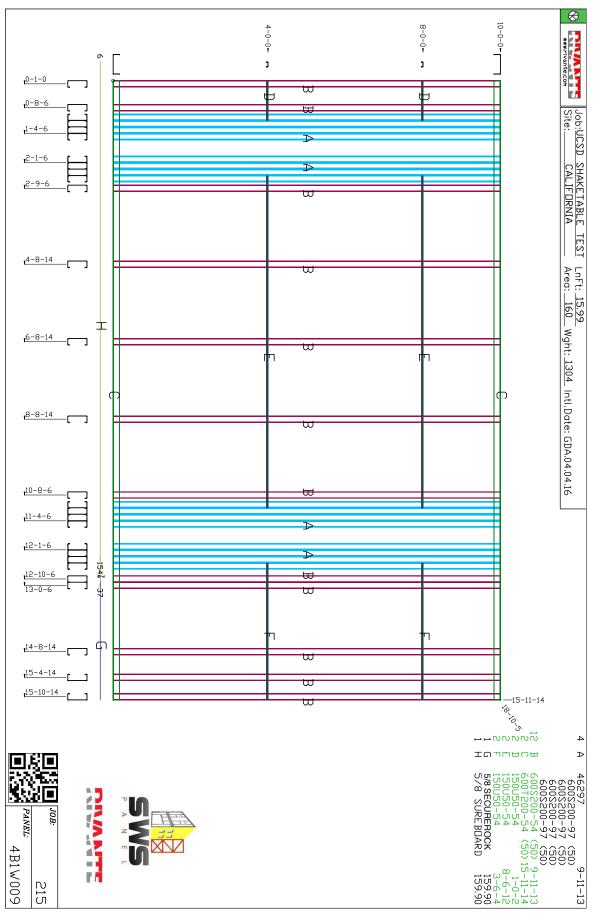


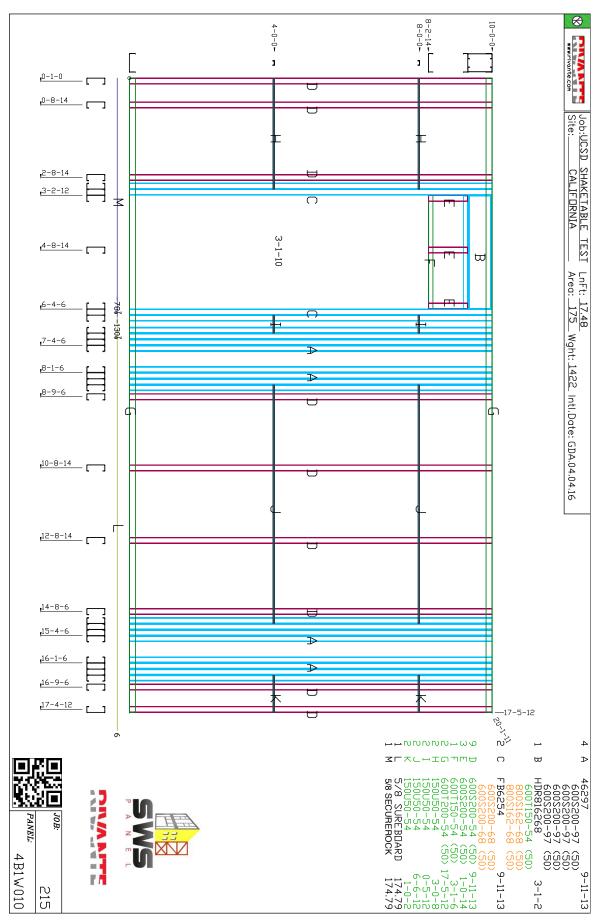

115

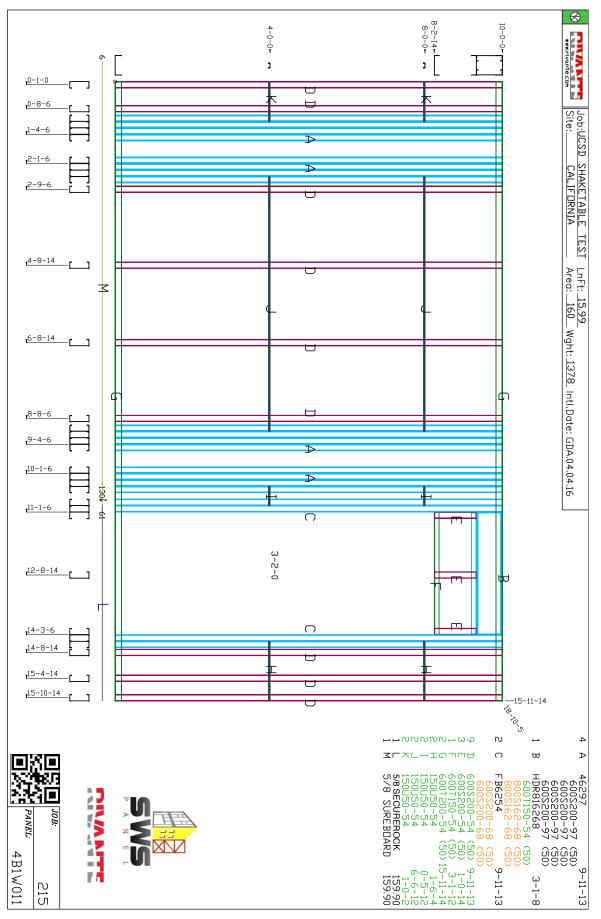


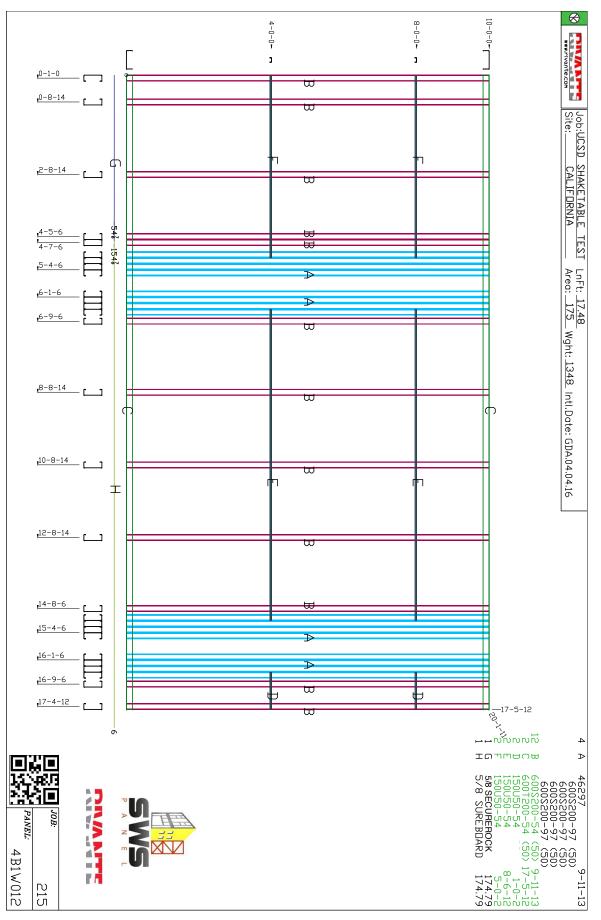


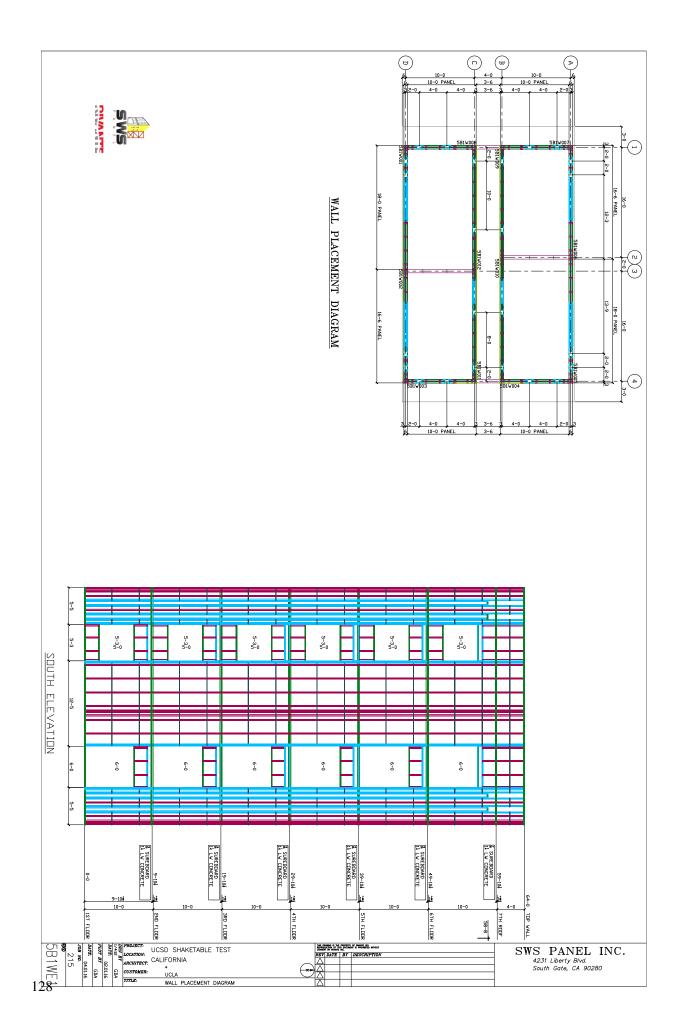


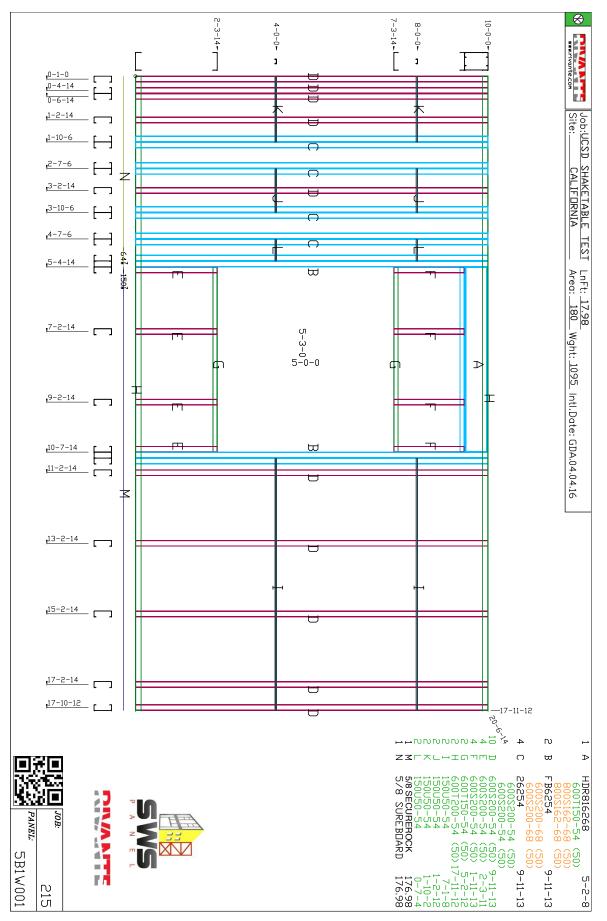


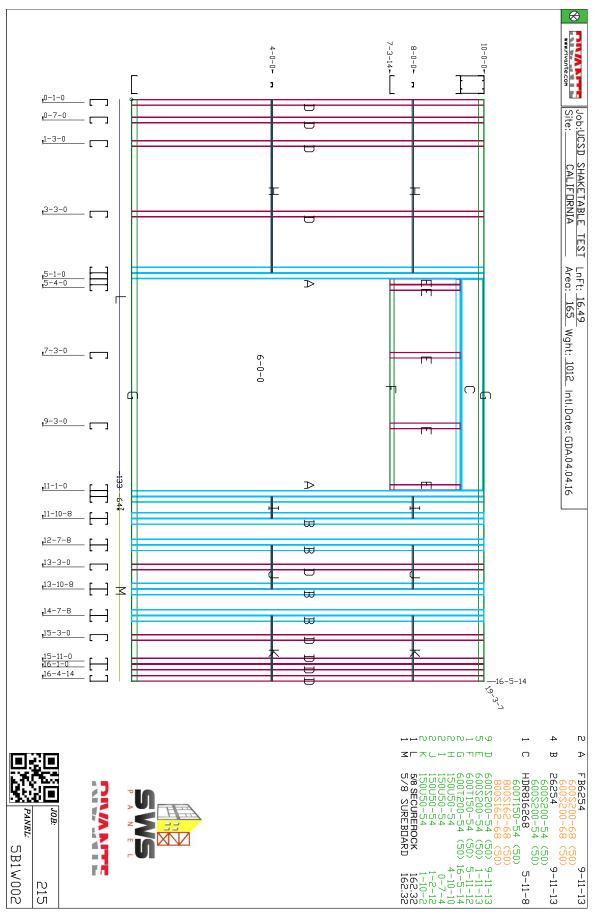


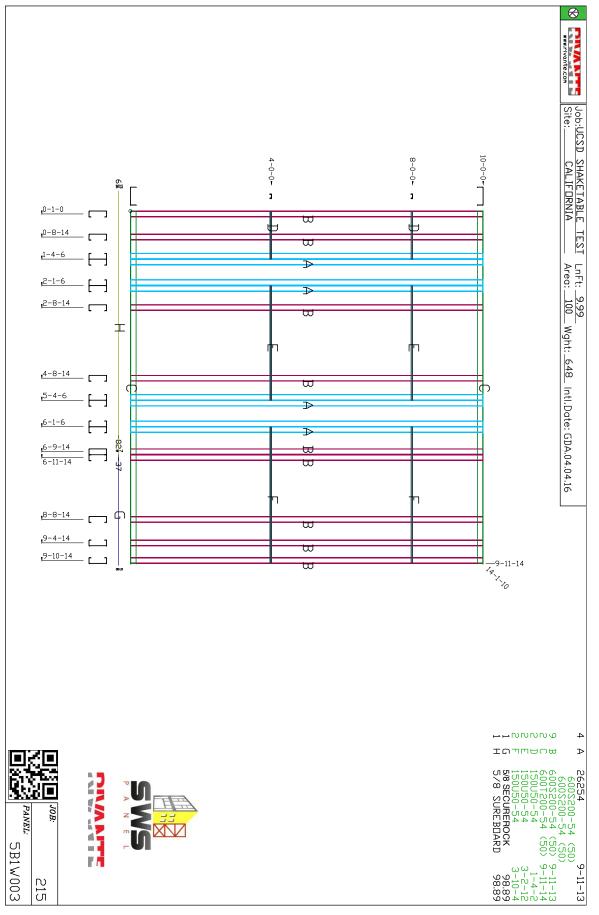


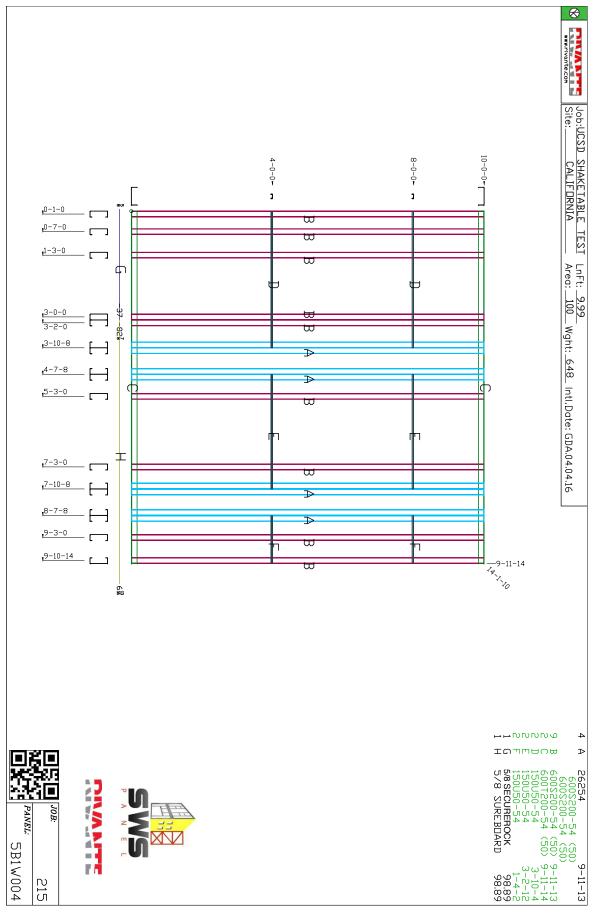


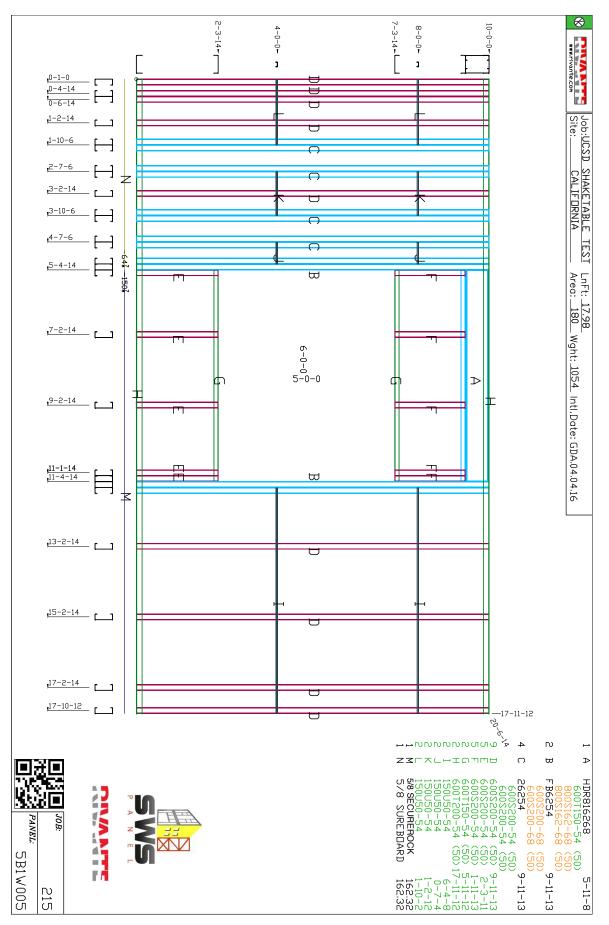


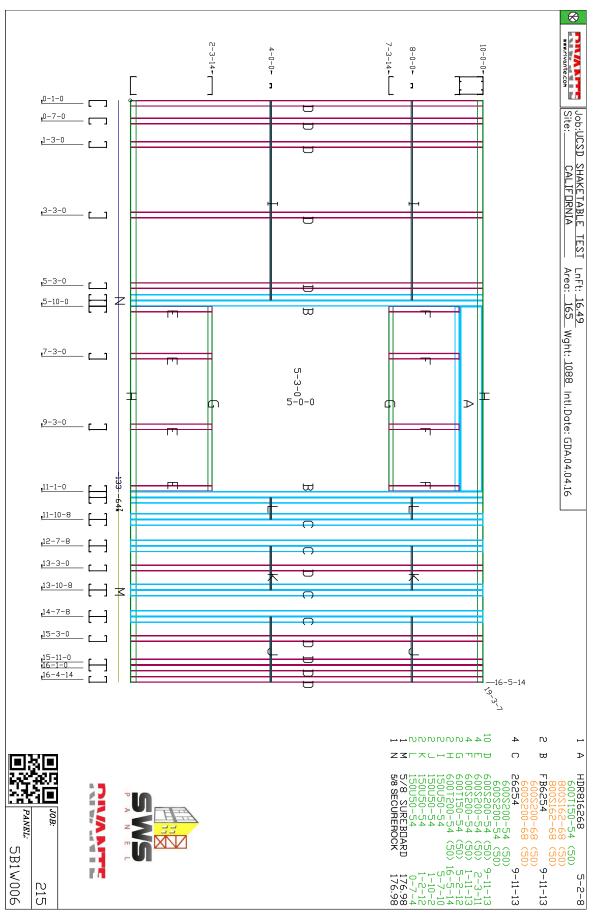


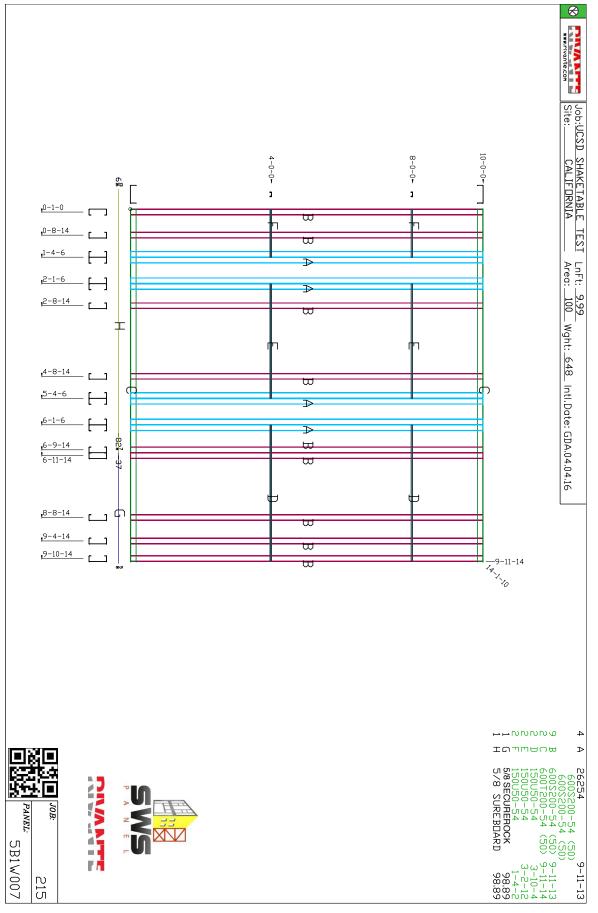


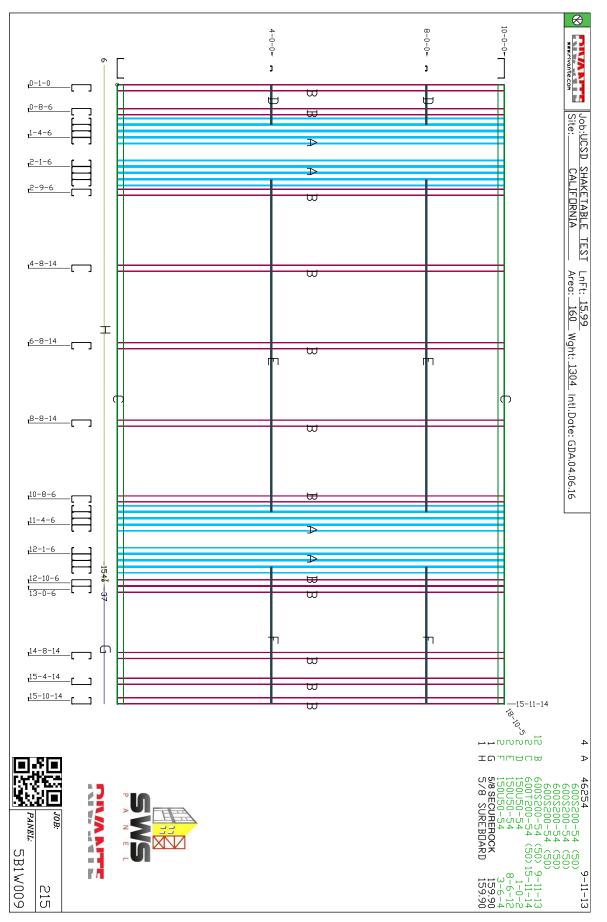


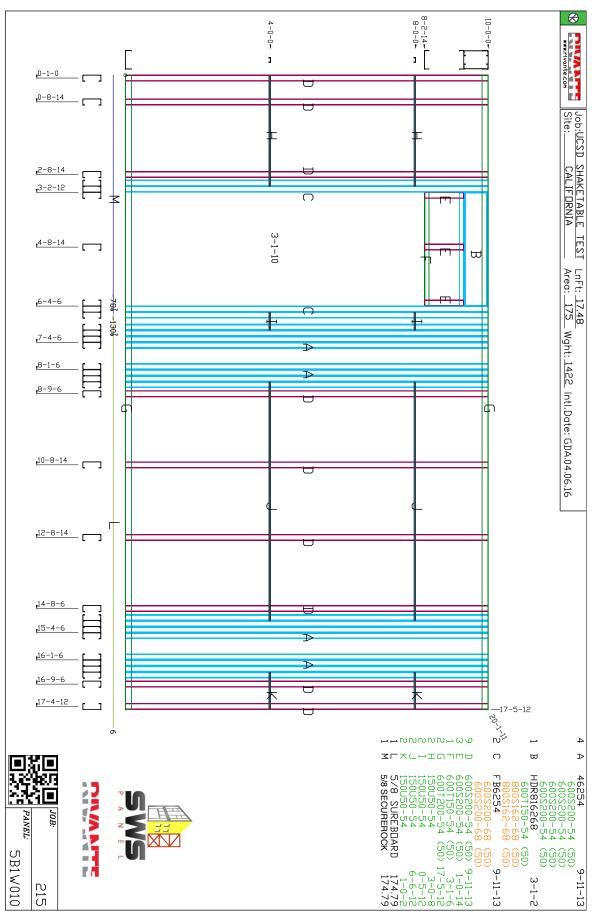


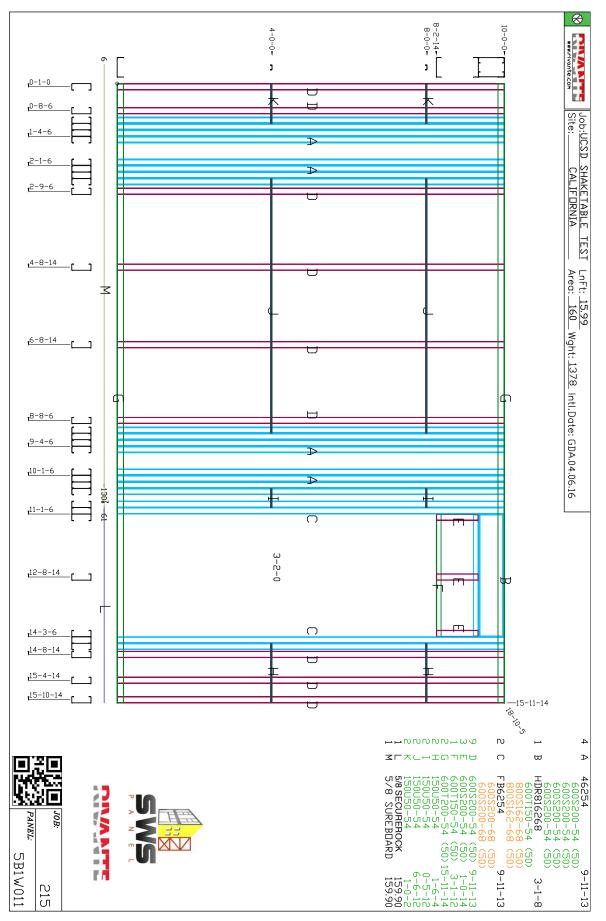


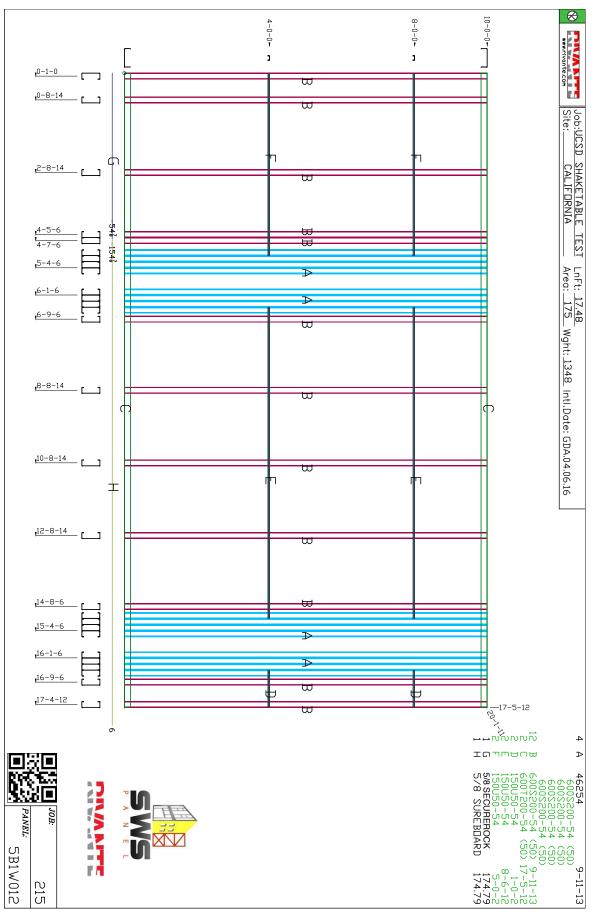


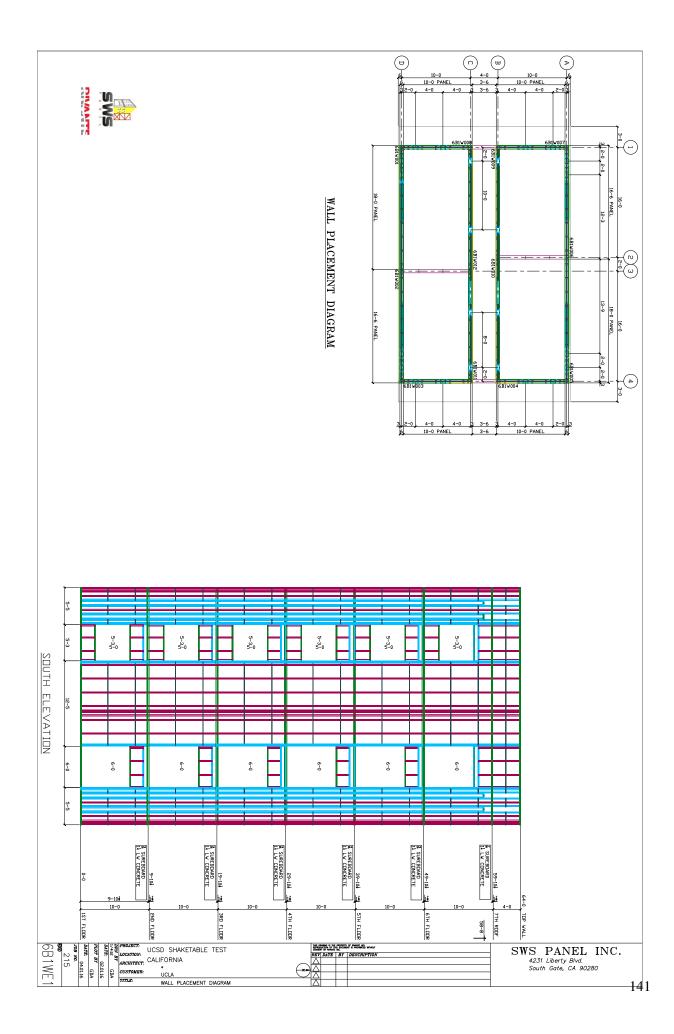


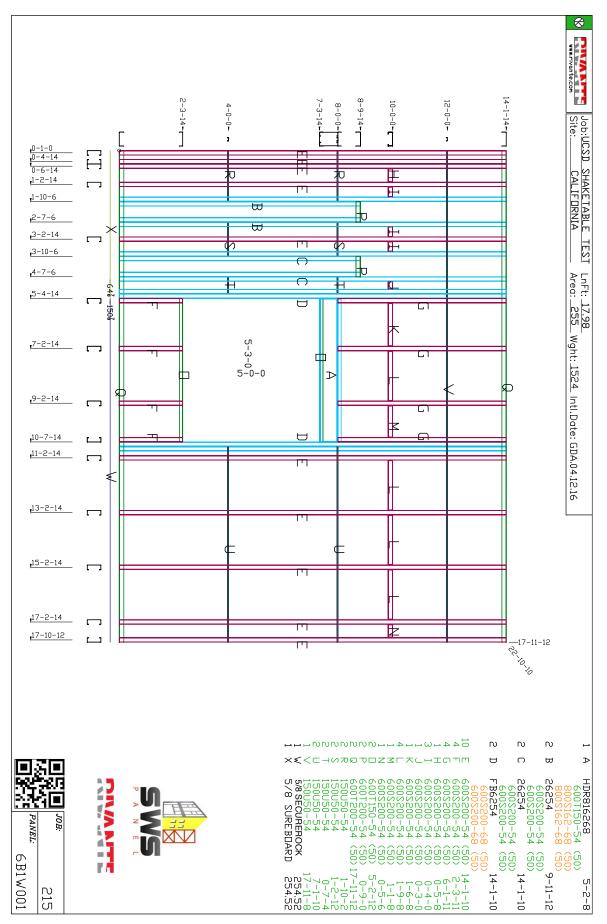


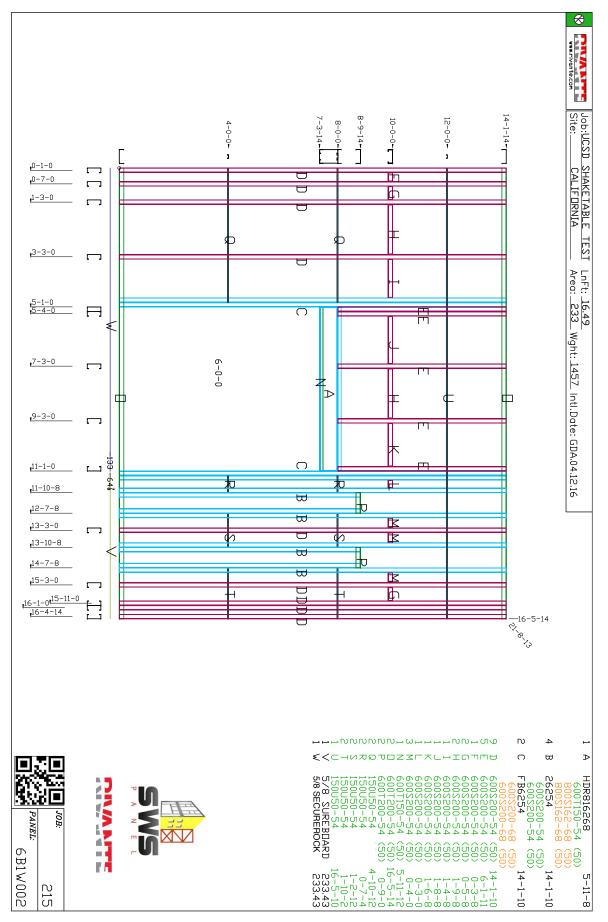


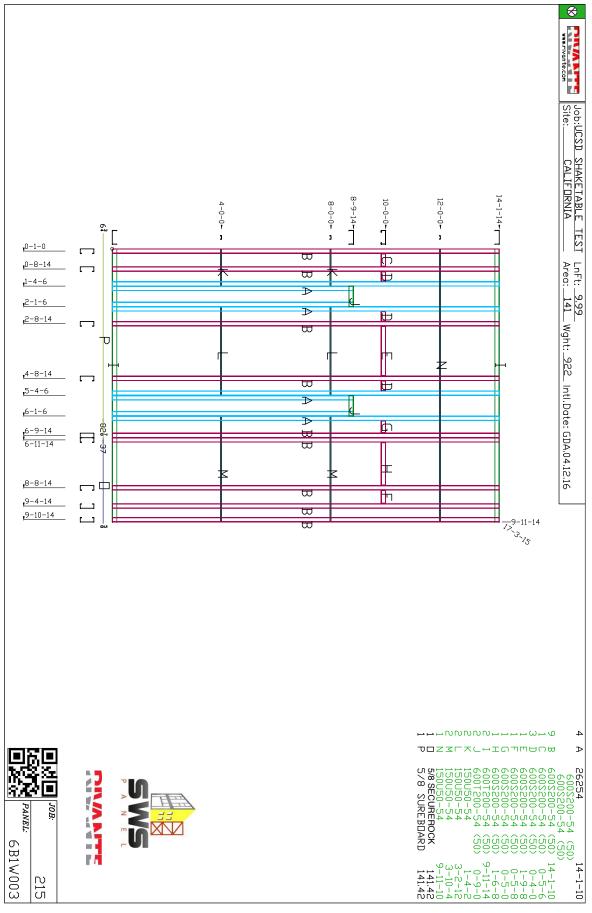


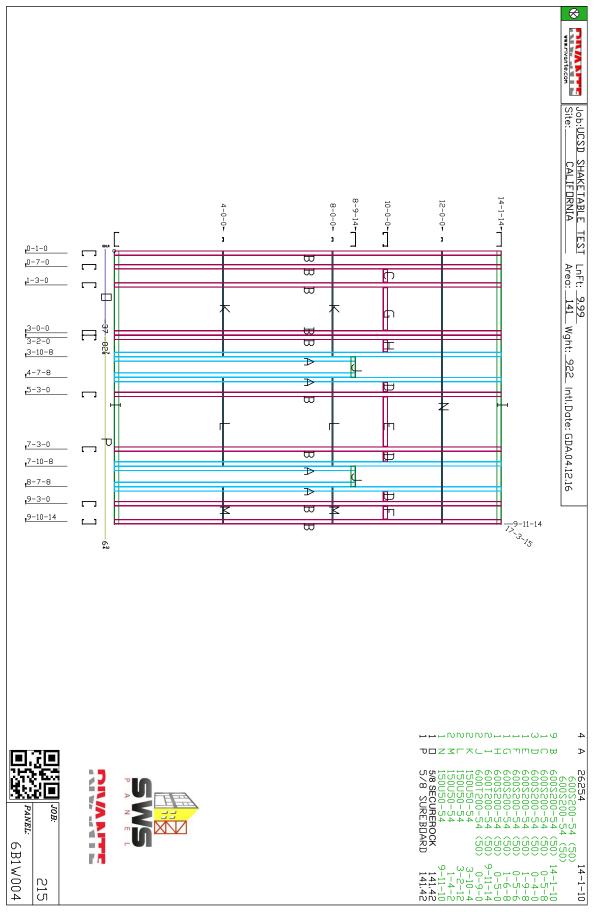


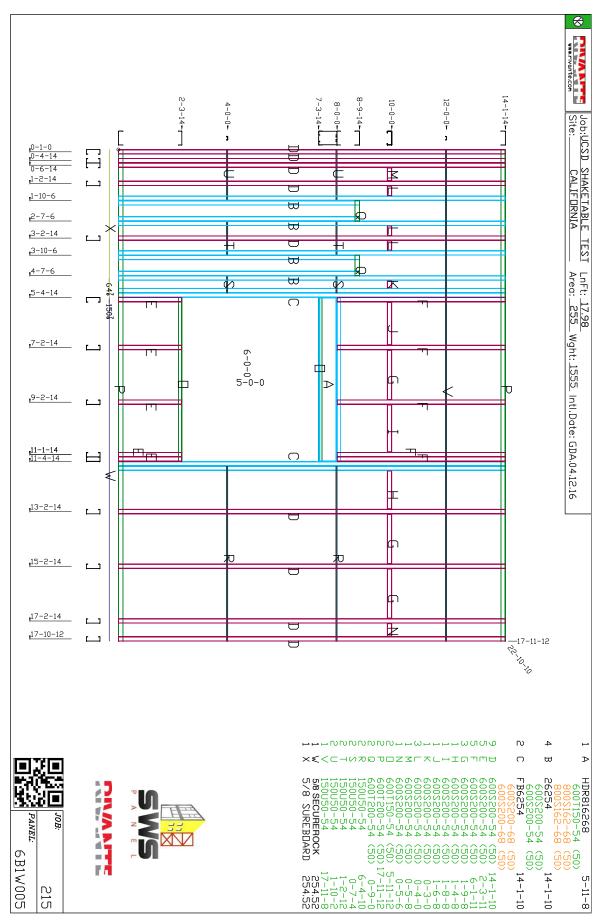


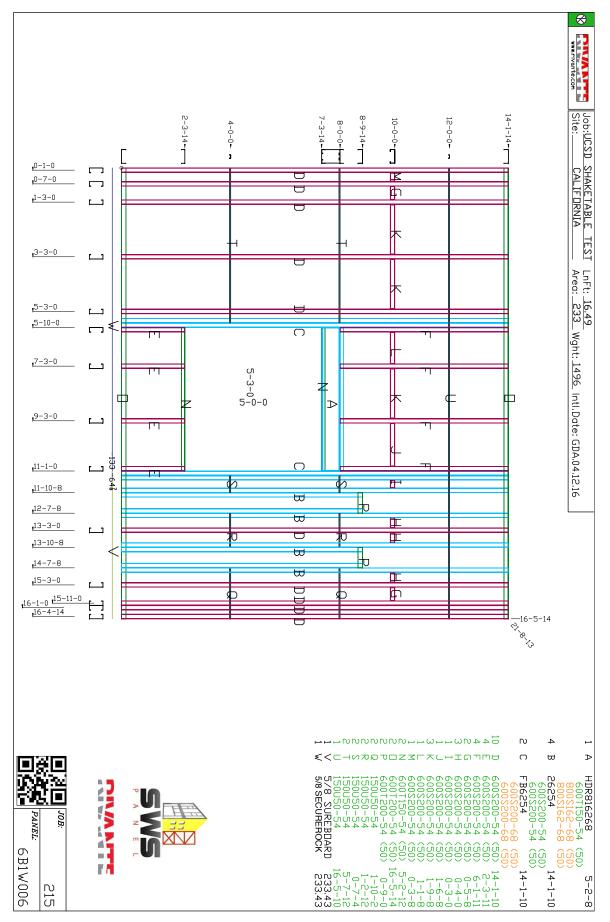


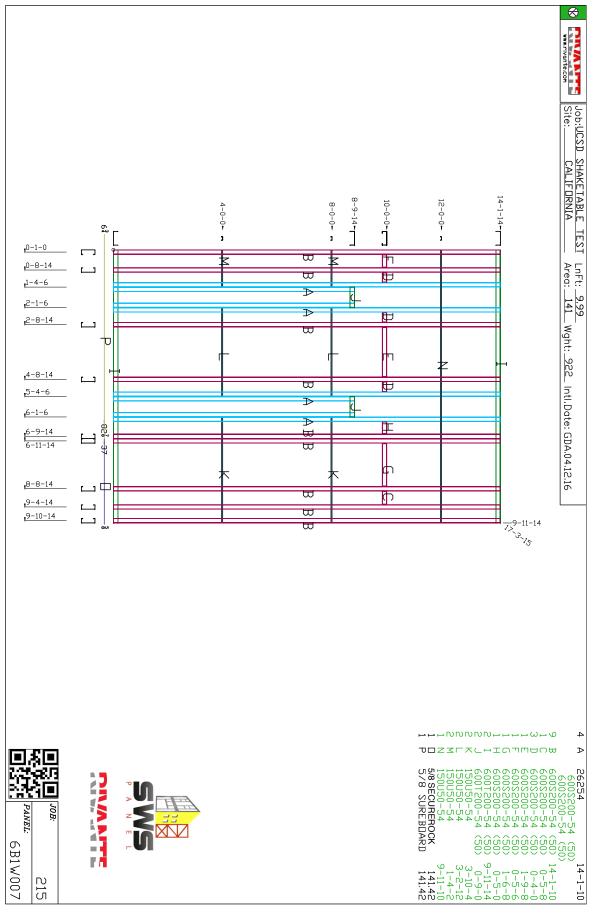


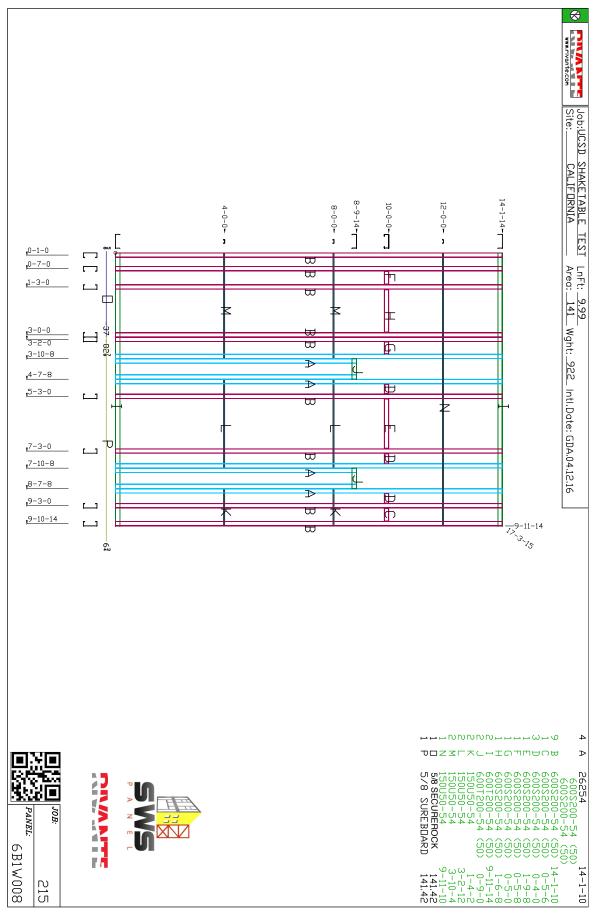


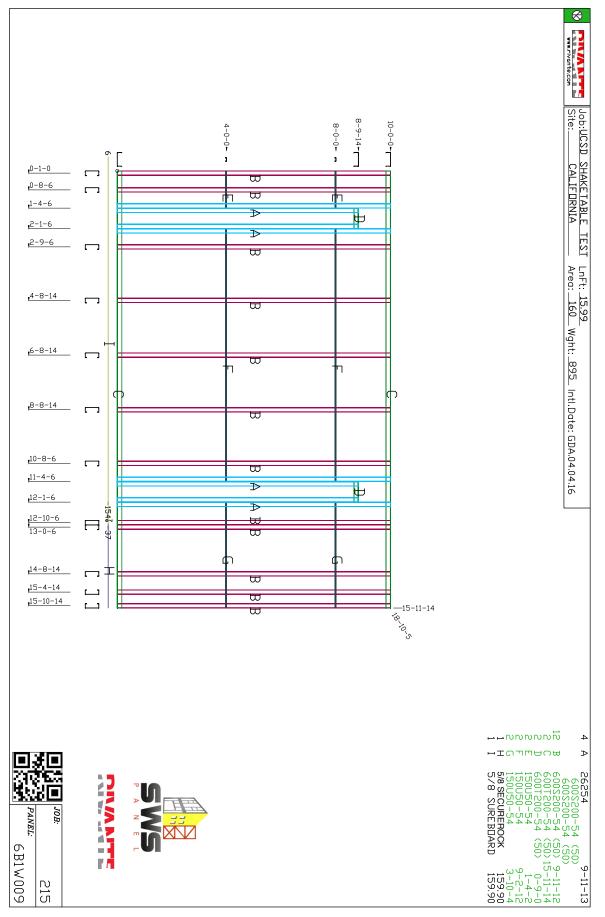


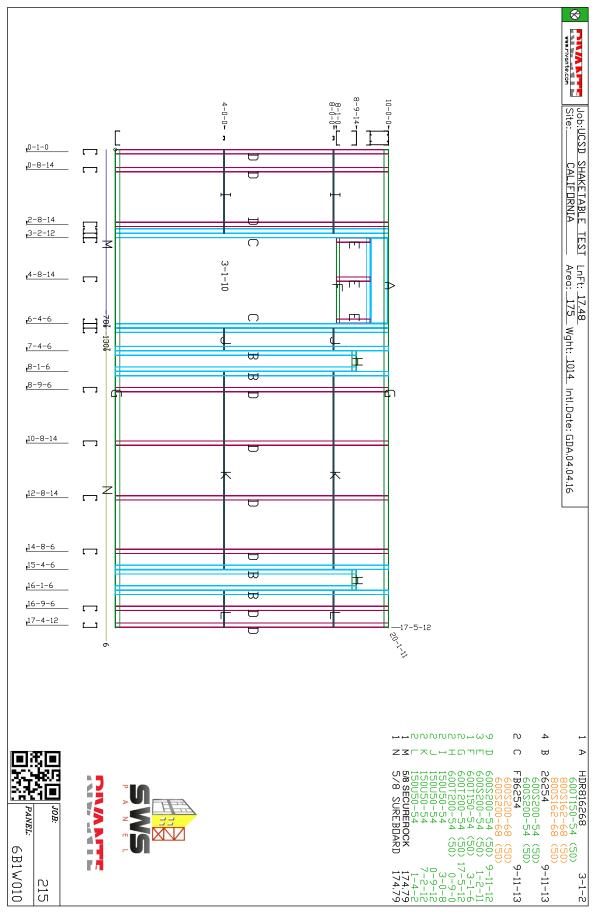


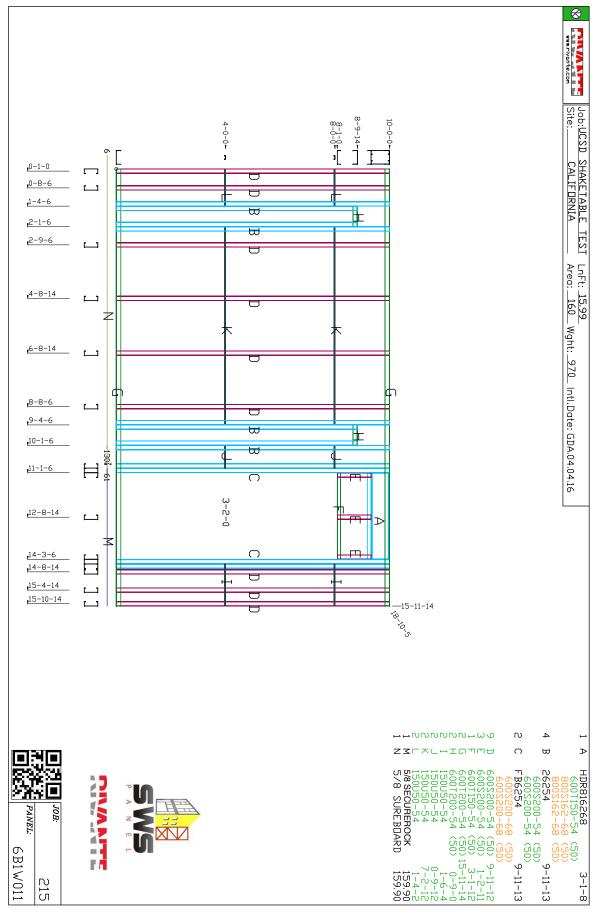


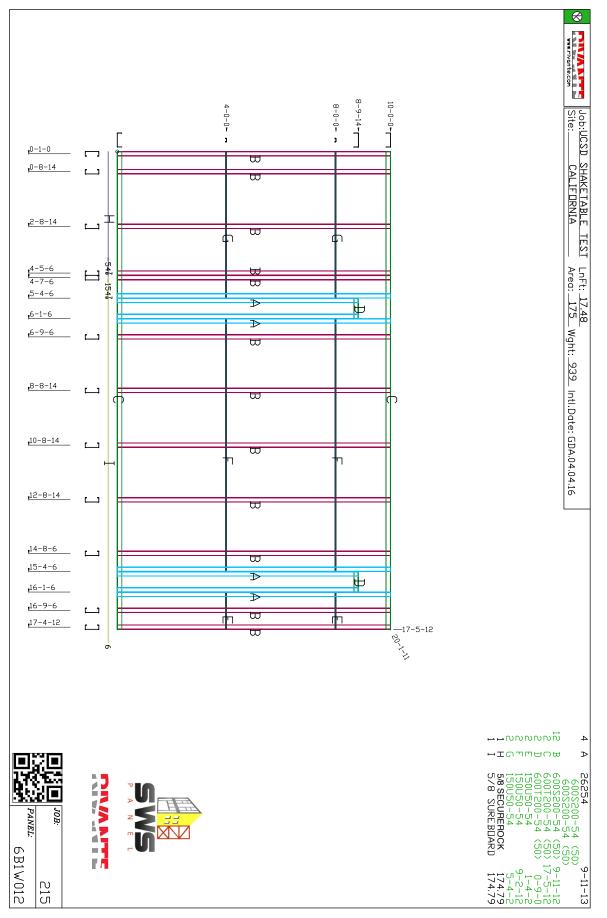


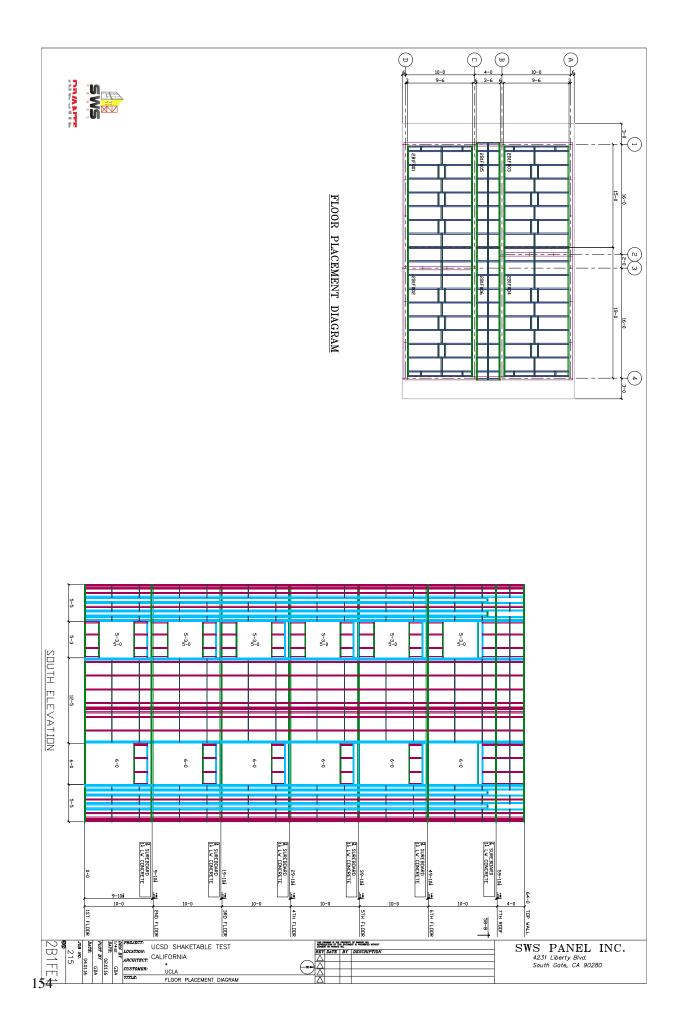


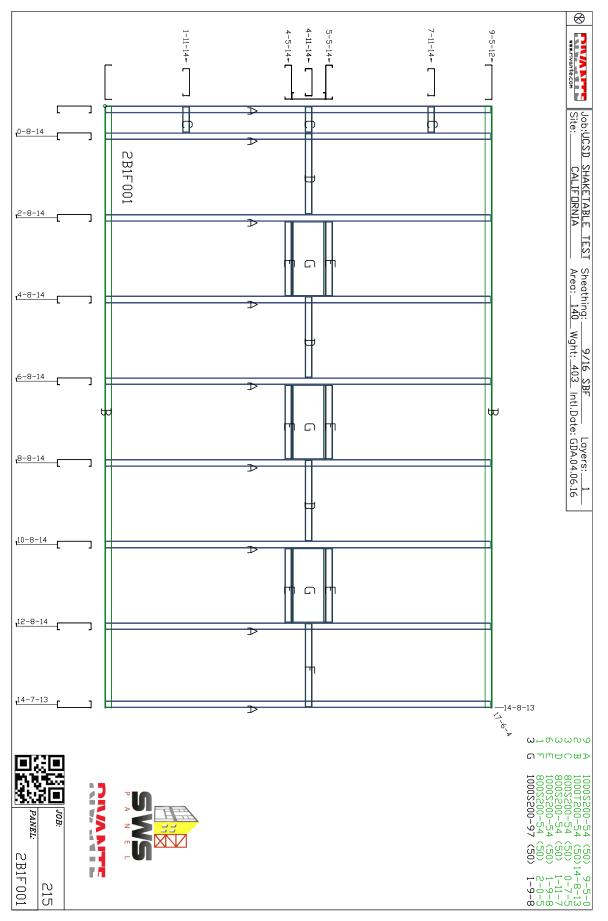


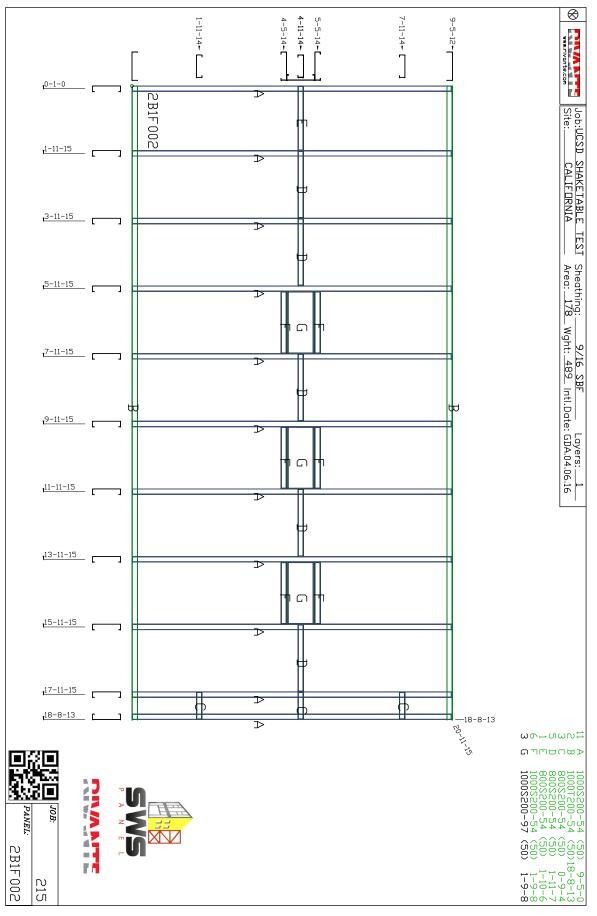


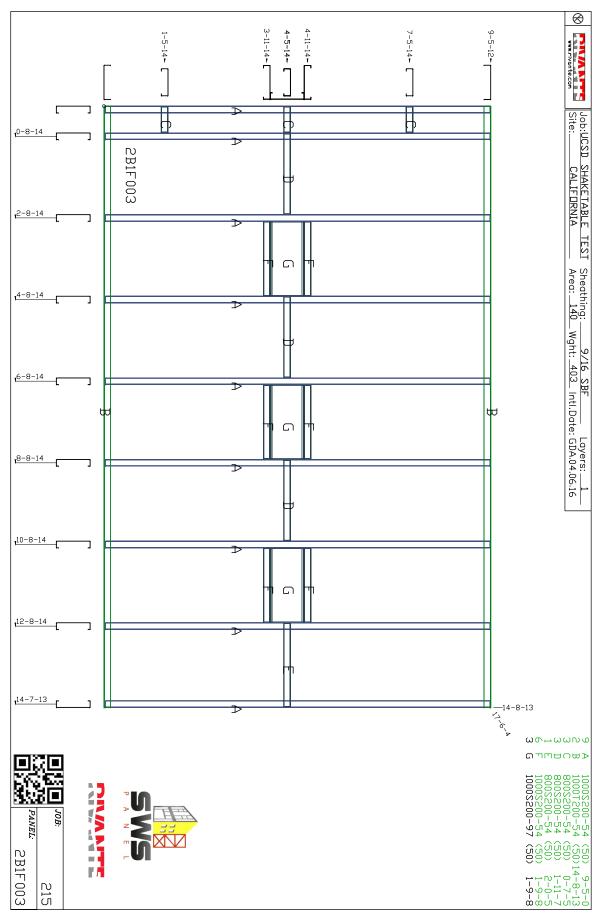


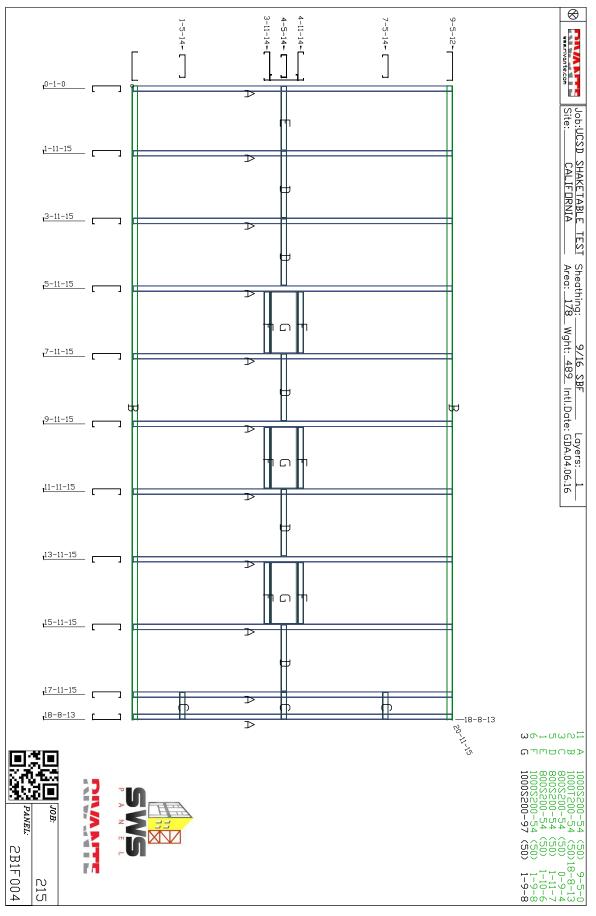


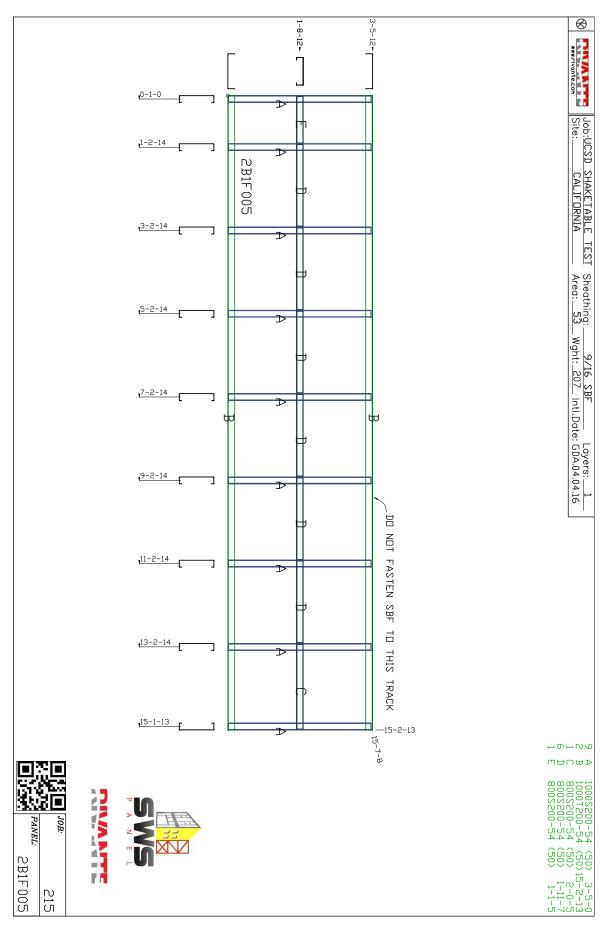


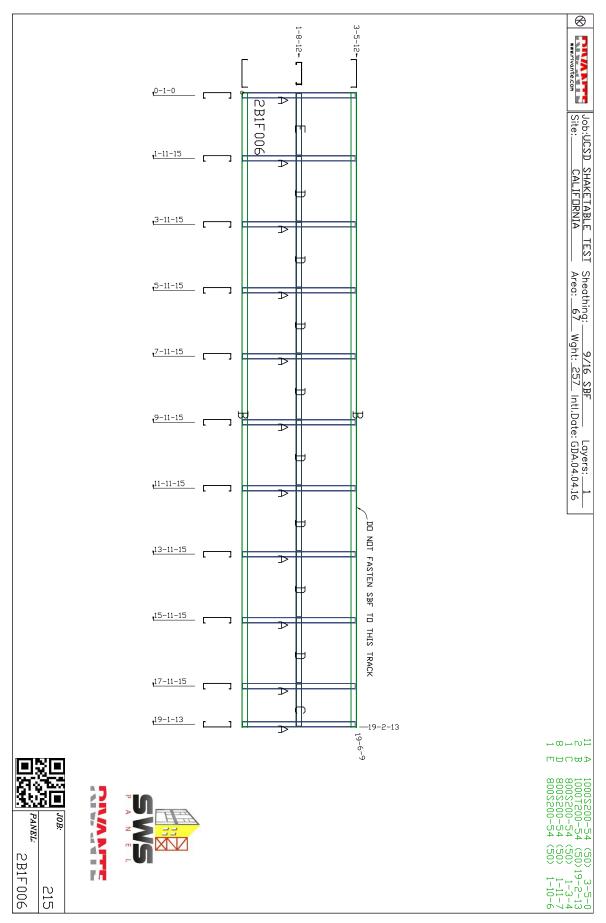


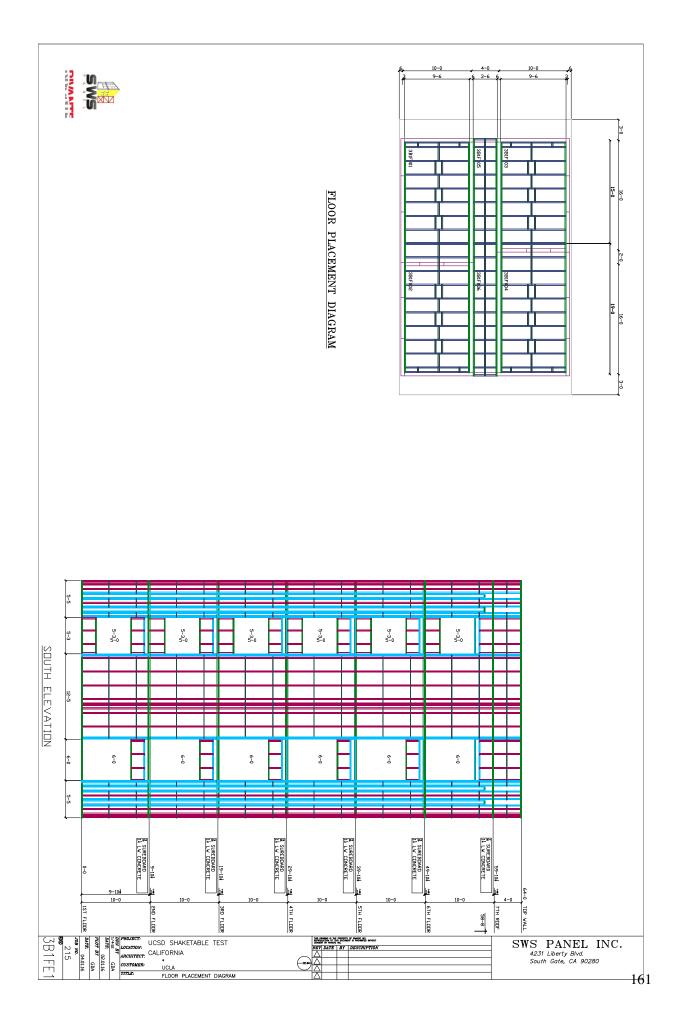


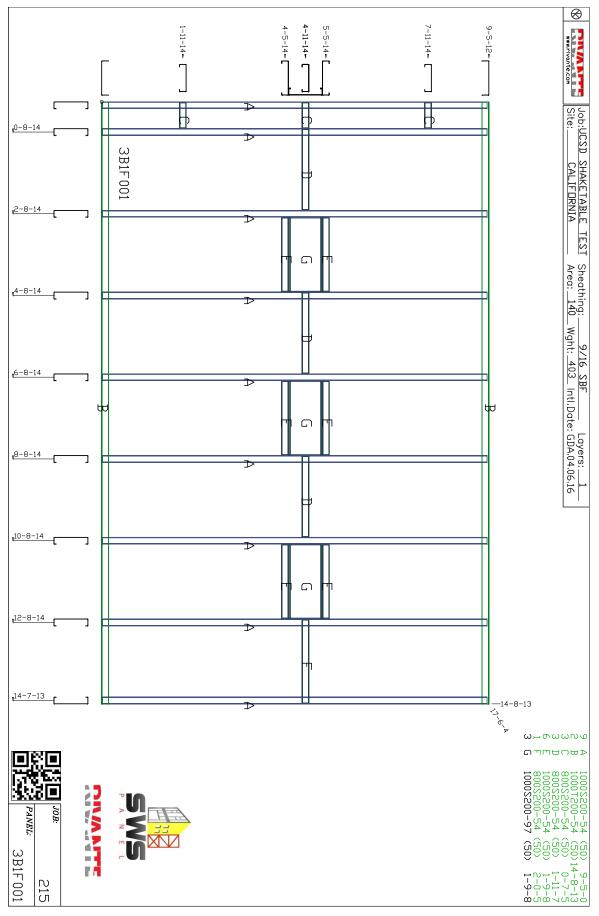


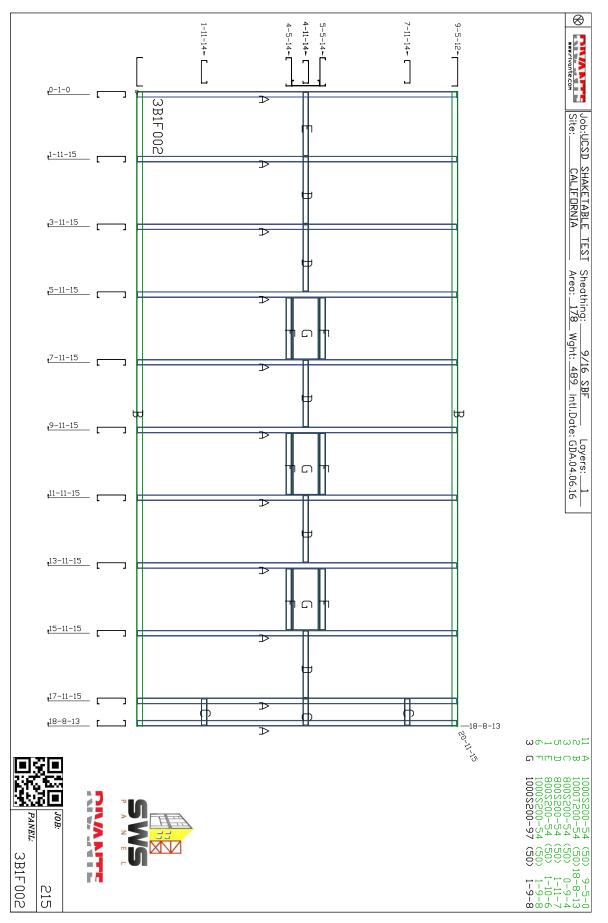


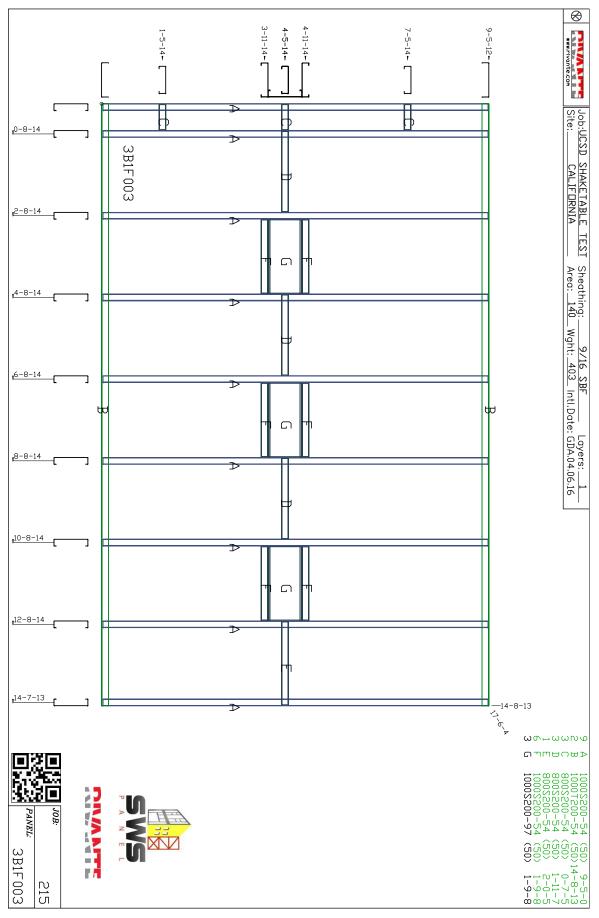


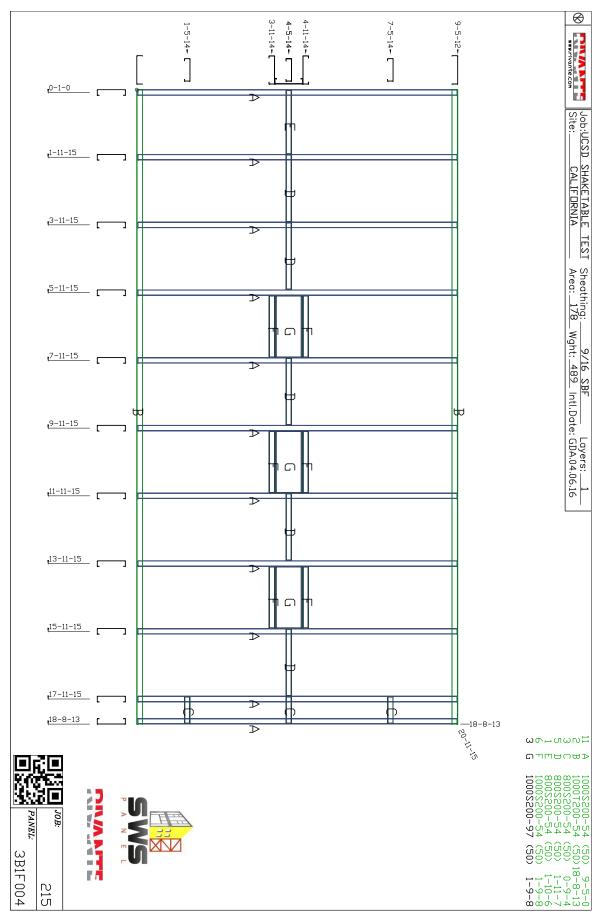


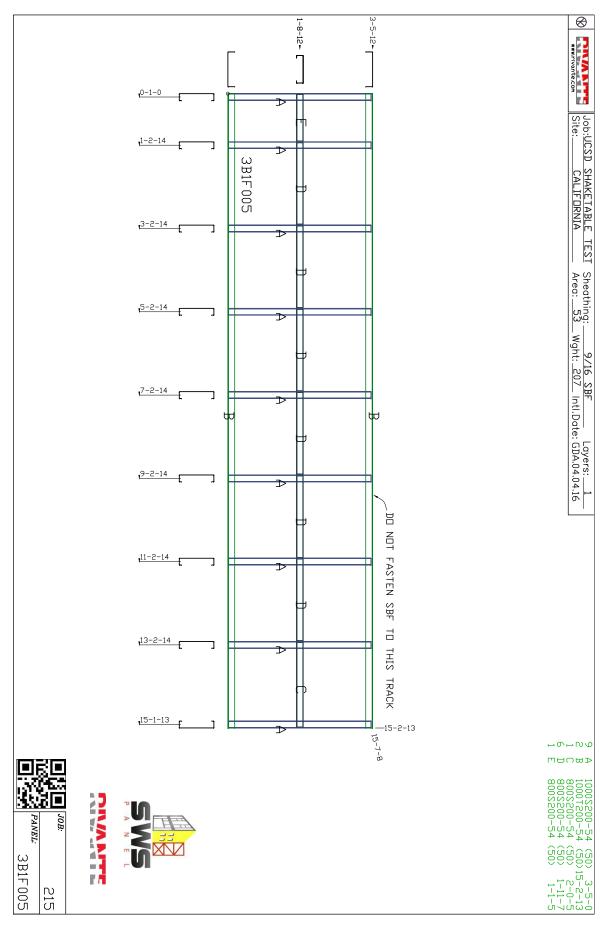


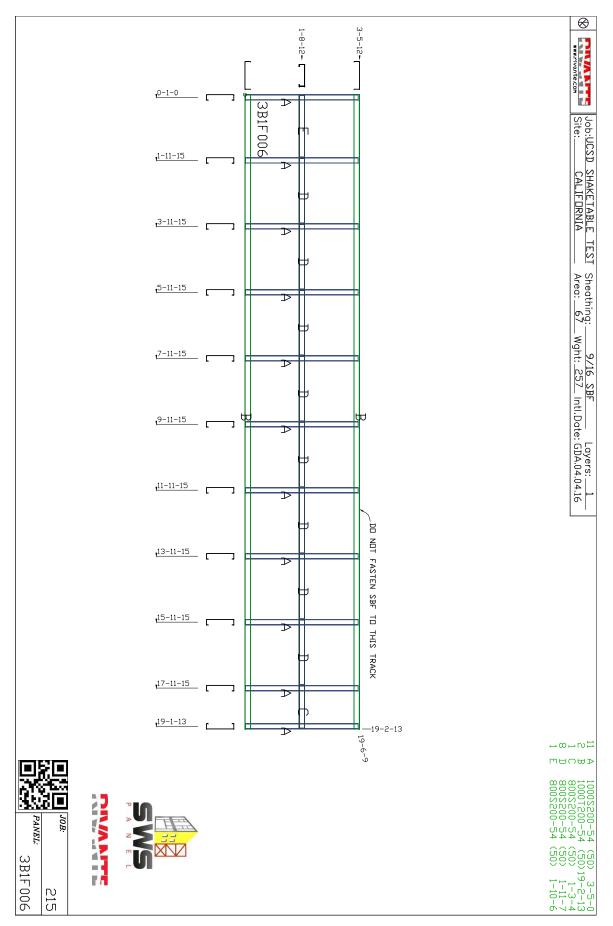


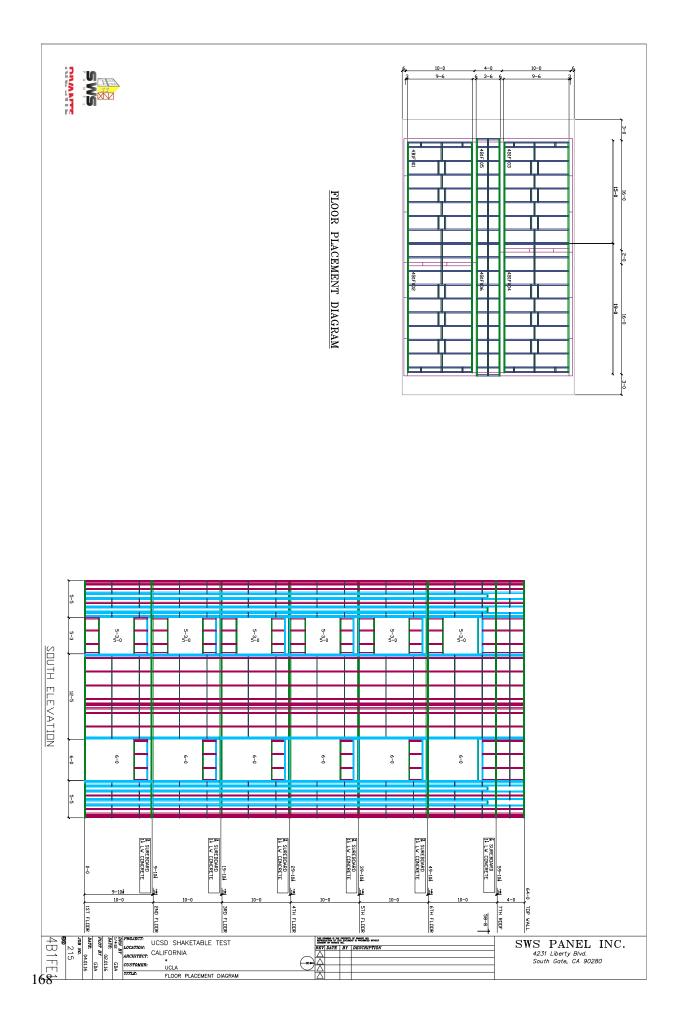


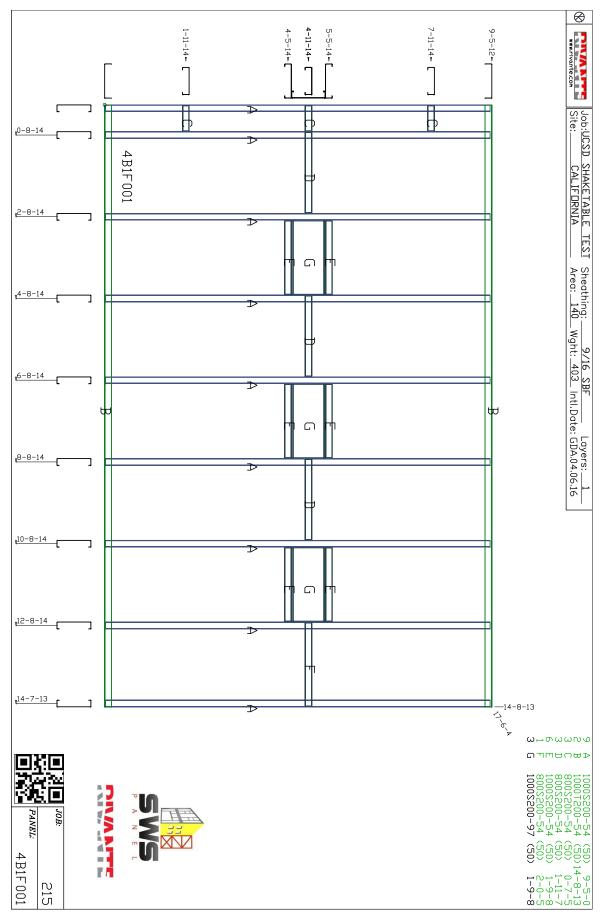


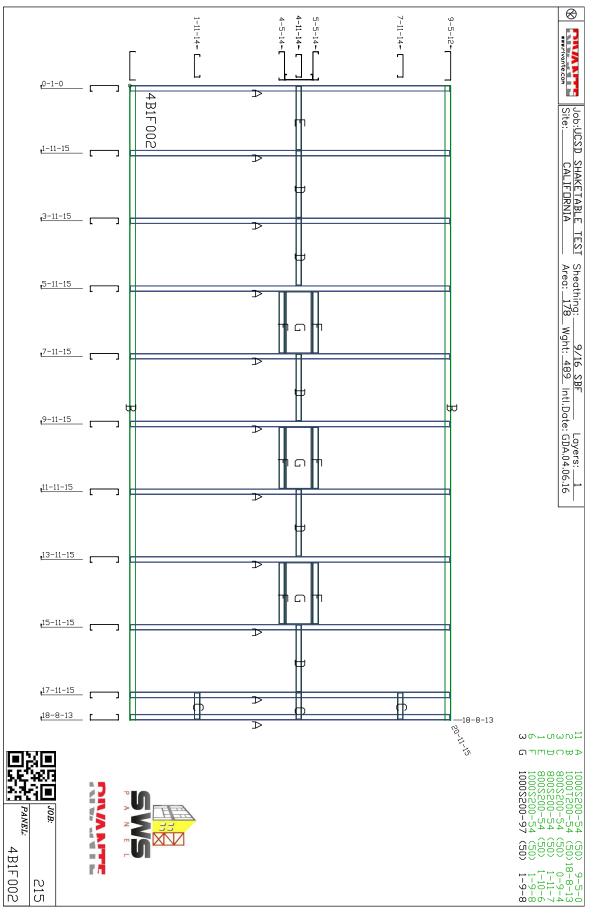


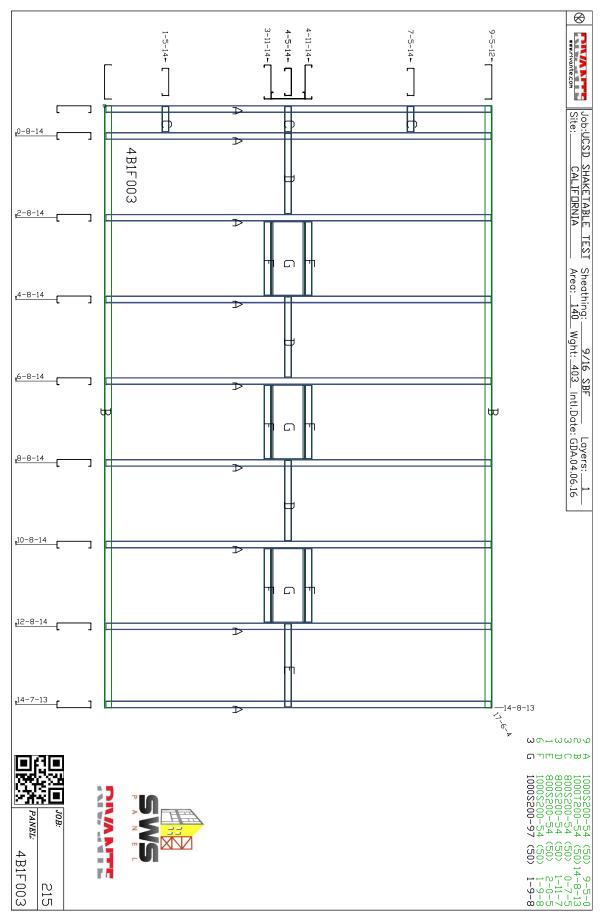


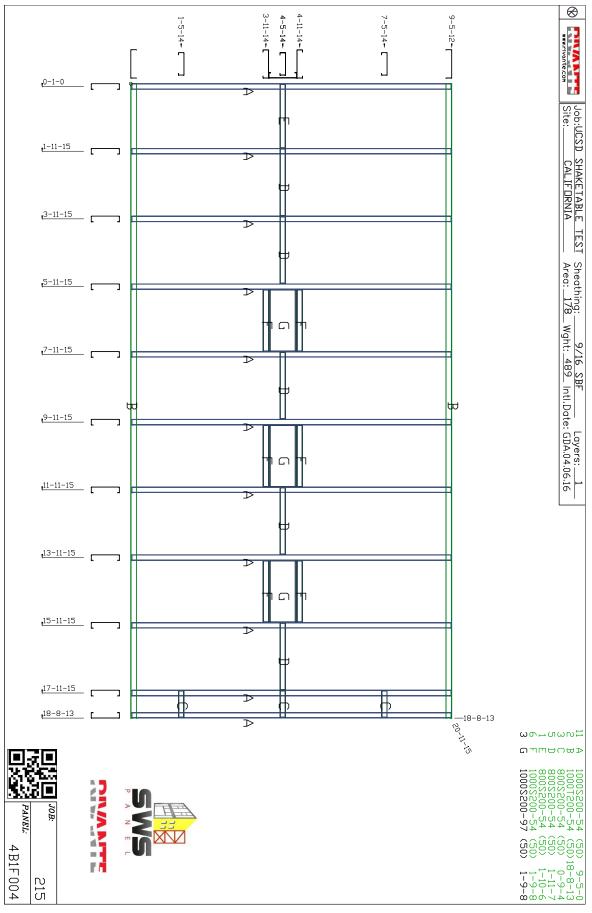


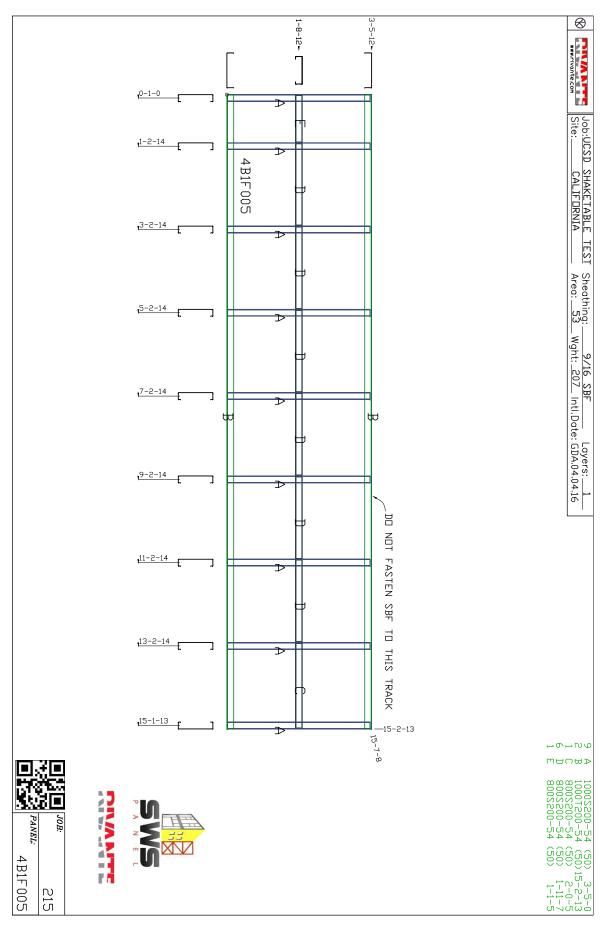


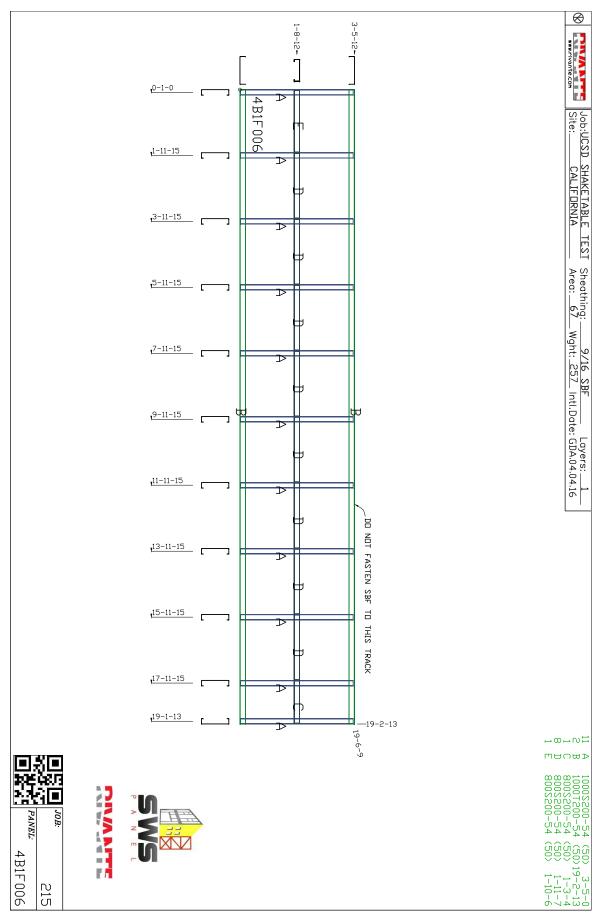


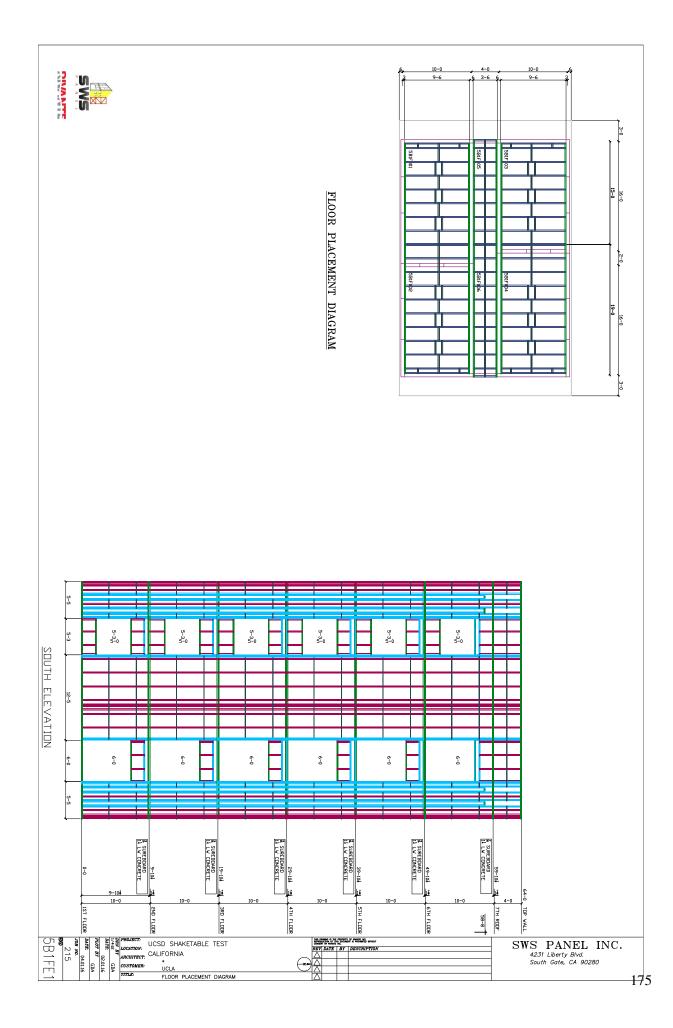


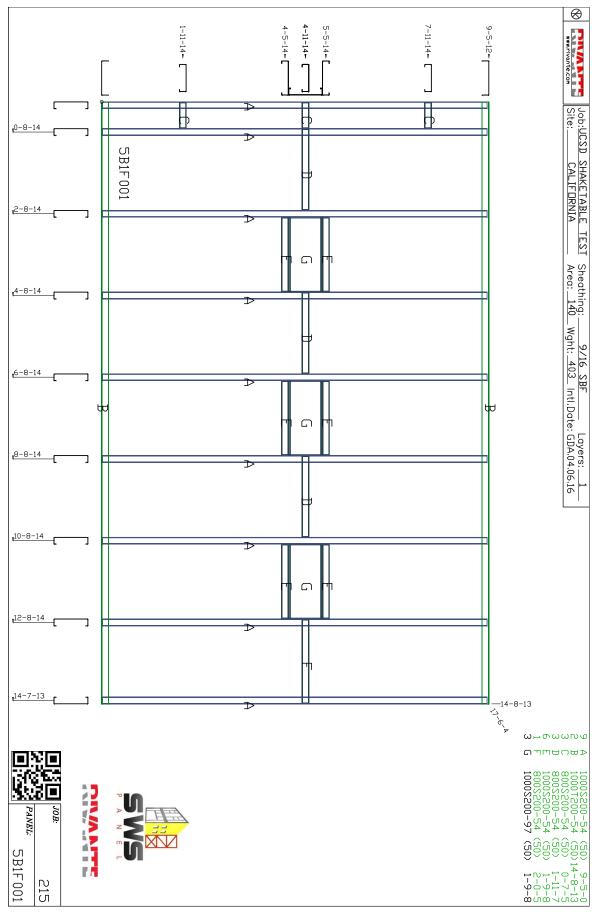


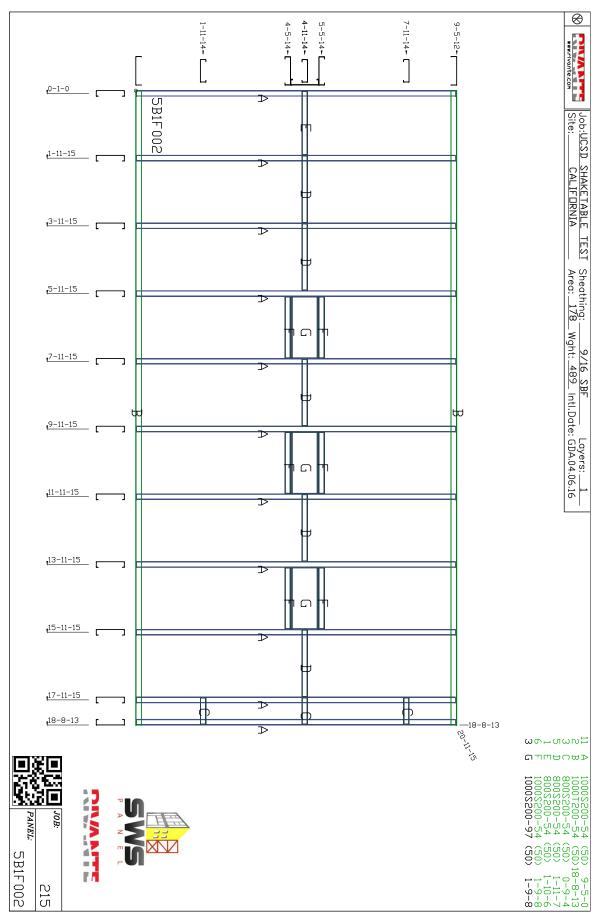


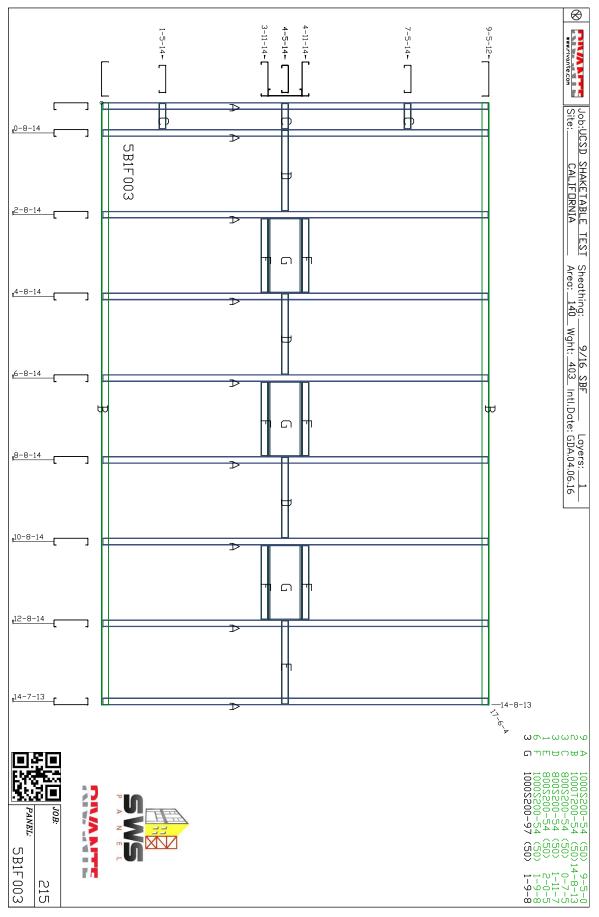


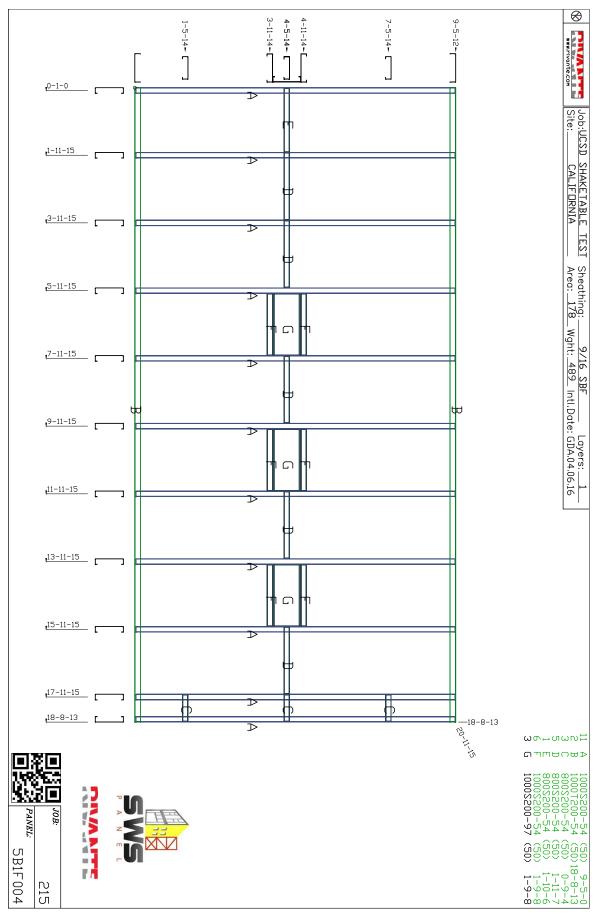


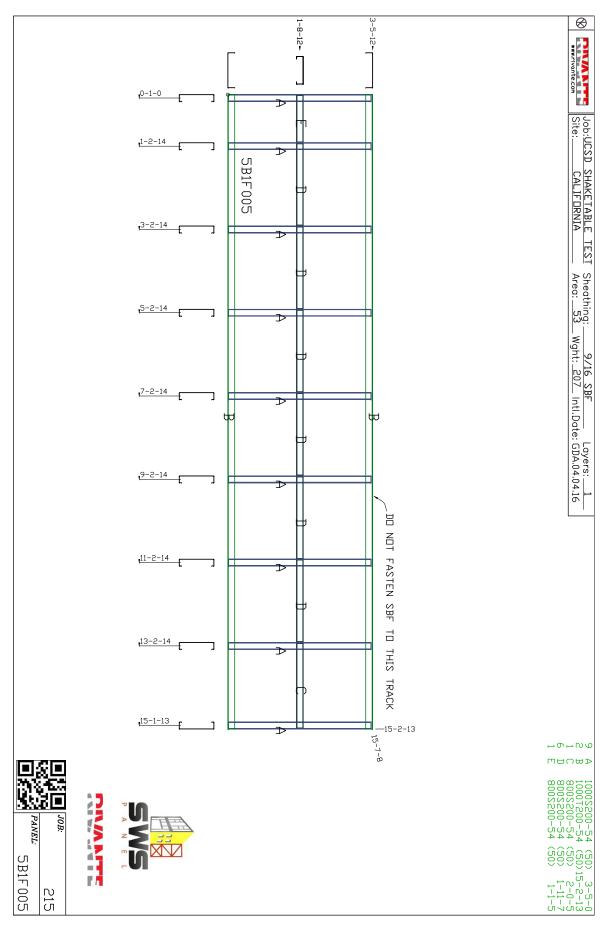


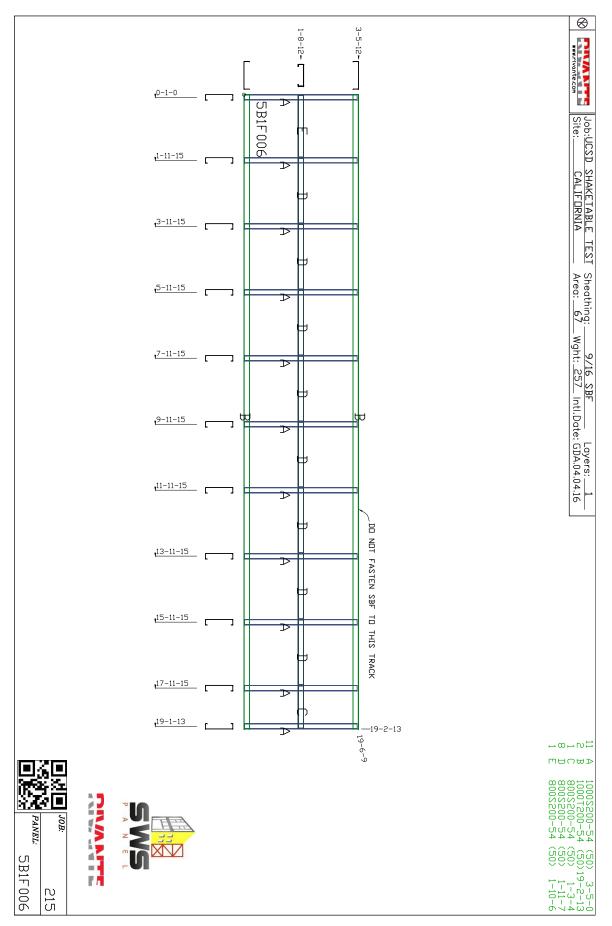


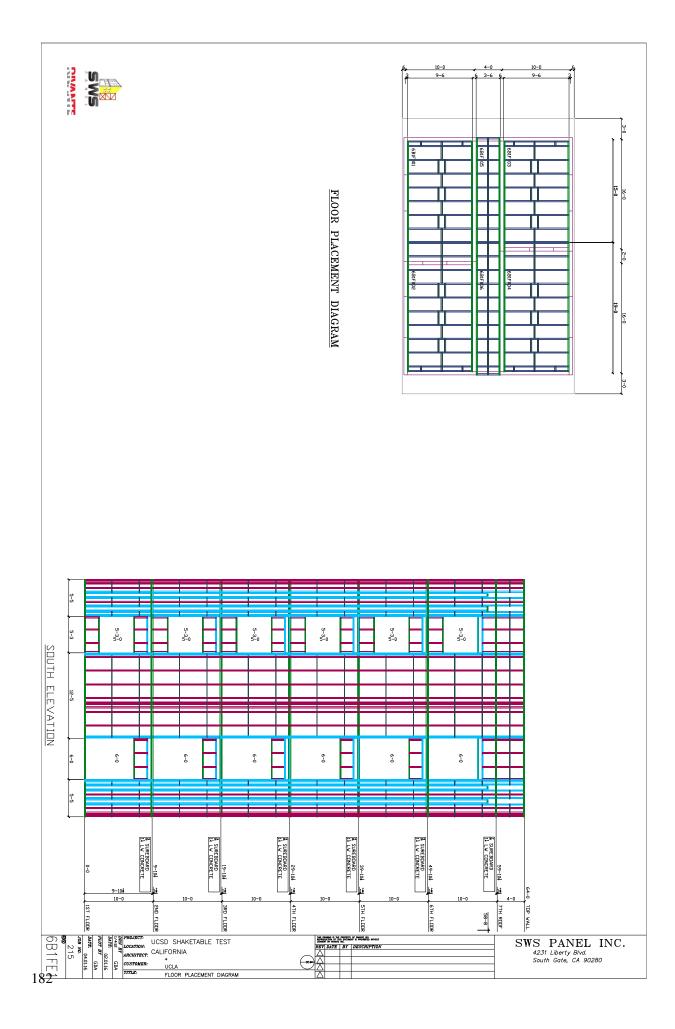


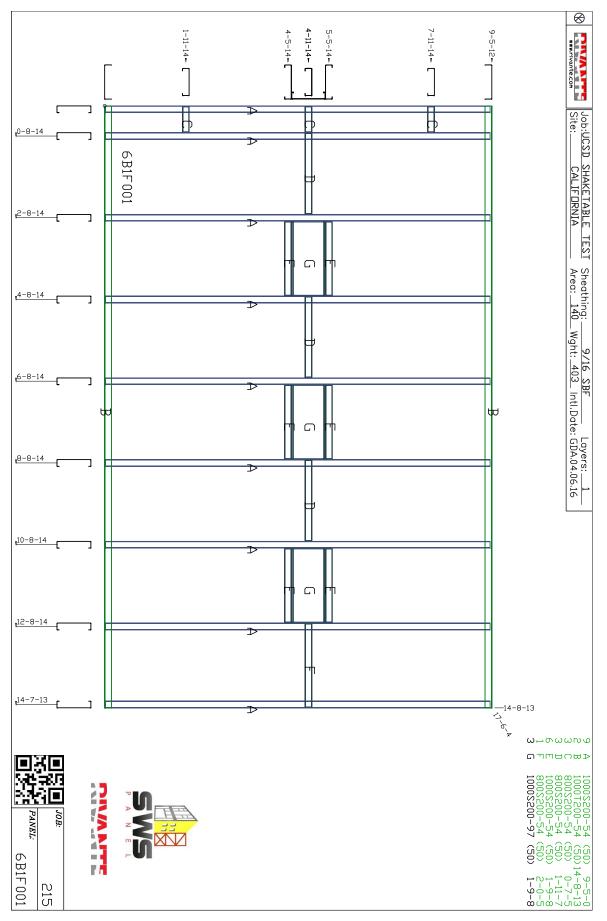


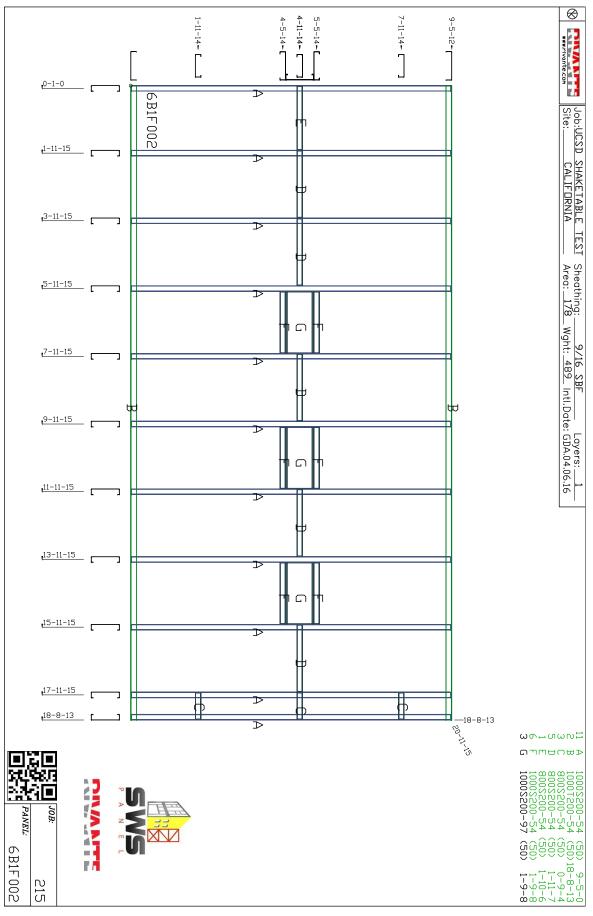


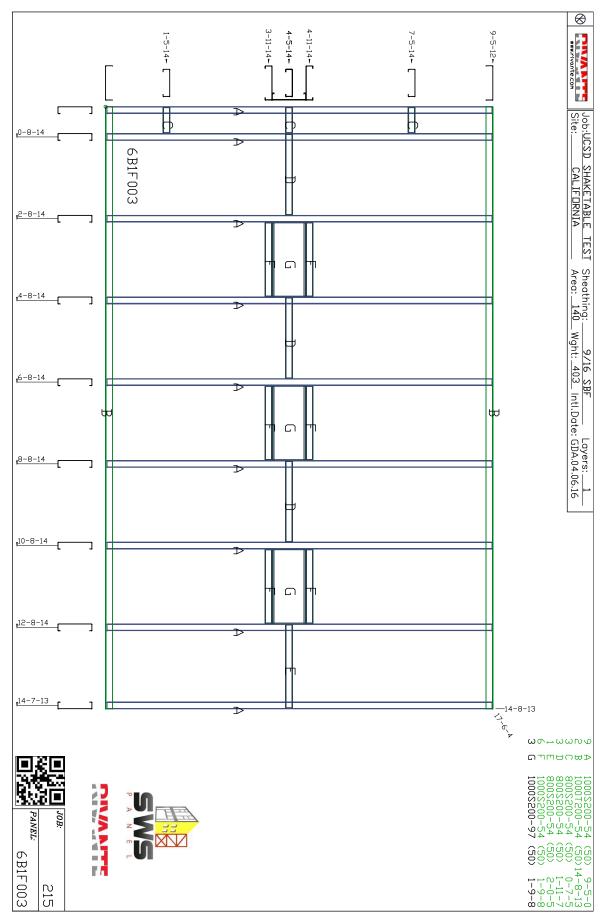


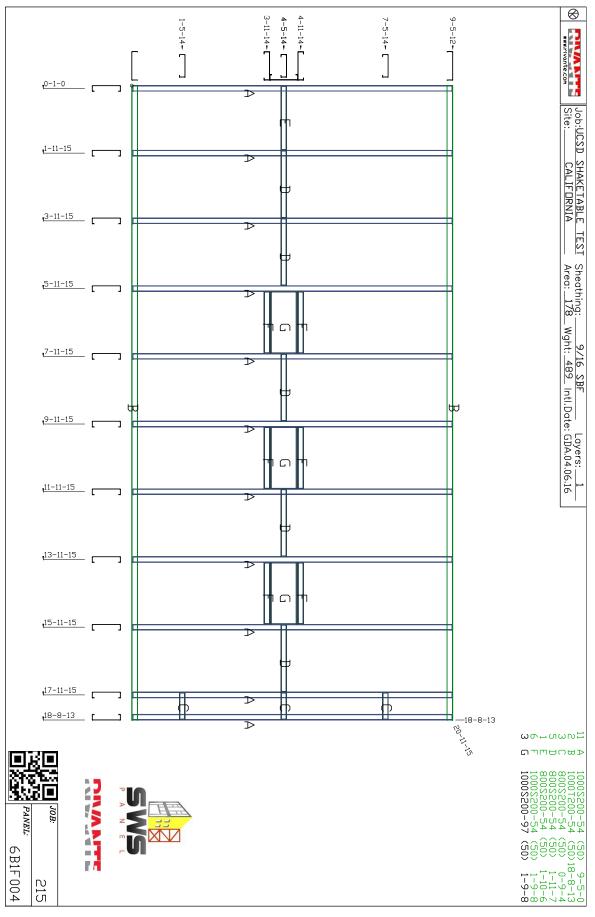


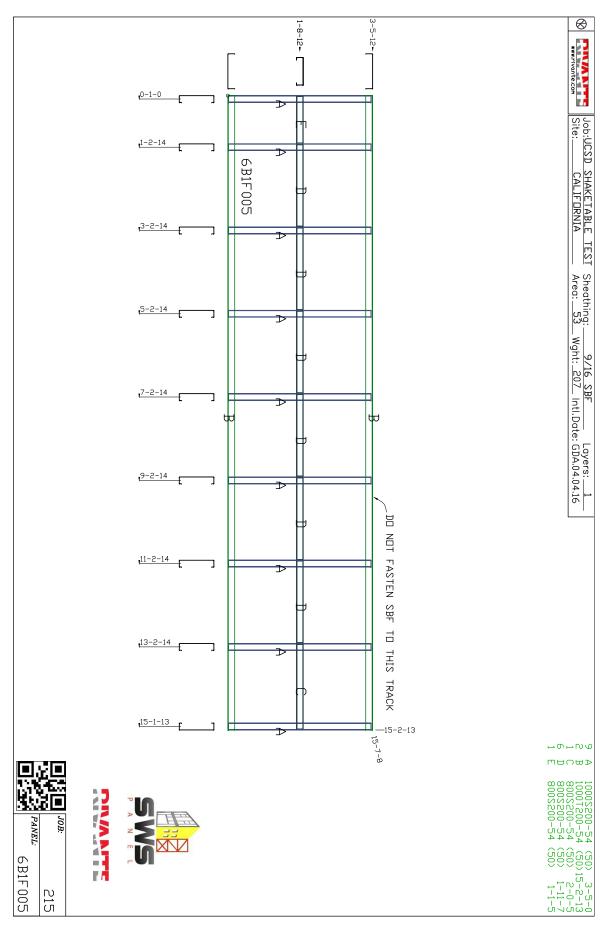


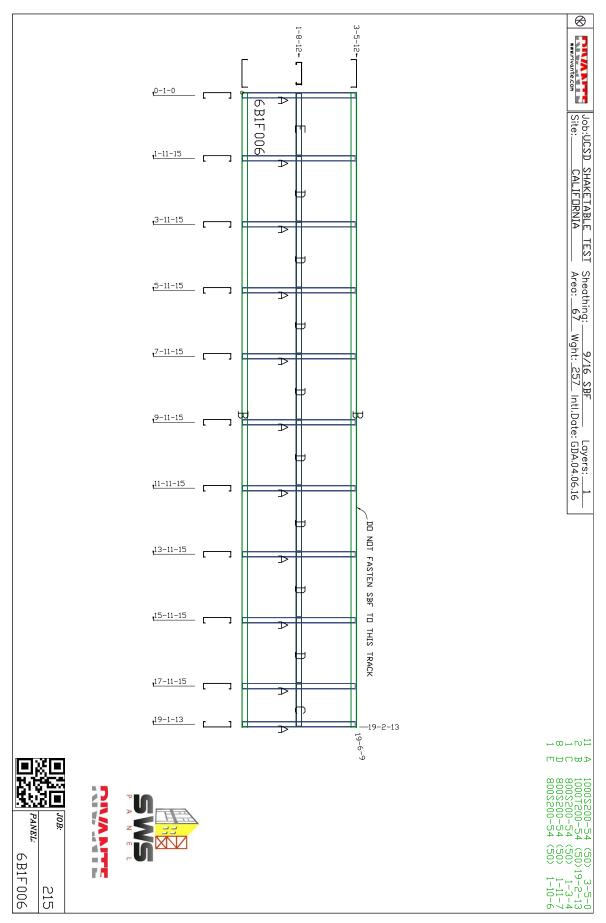


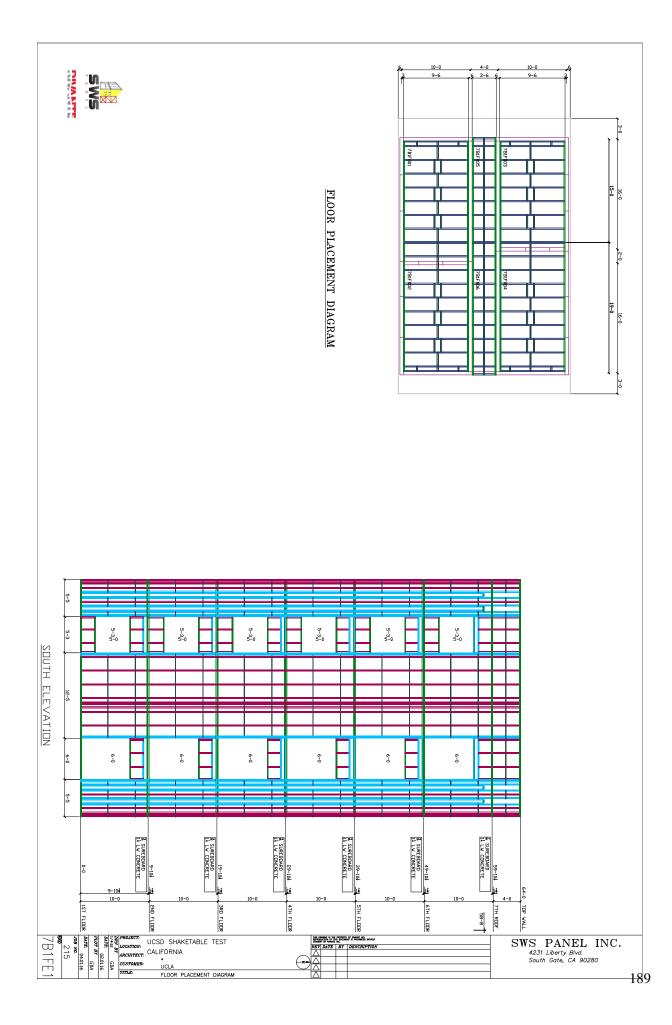


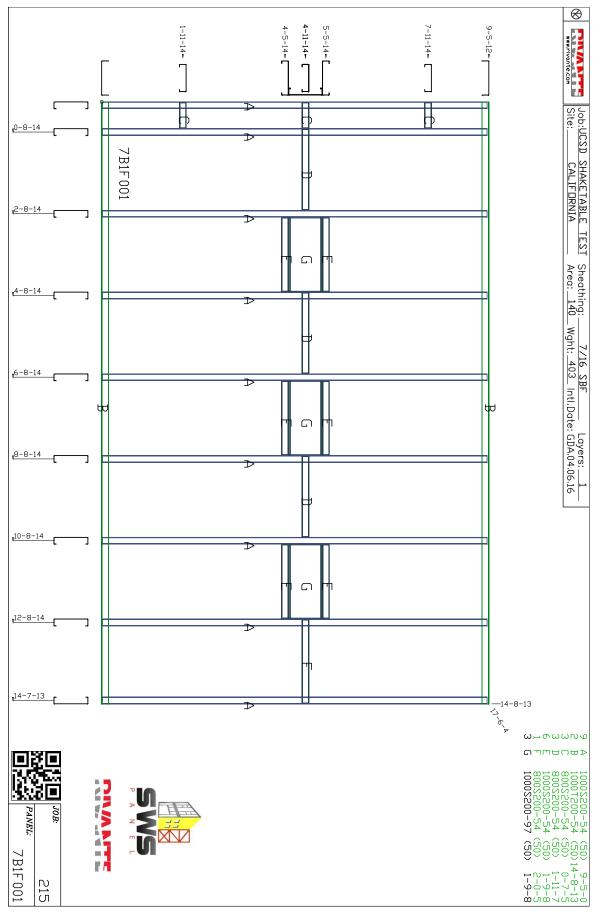


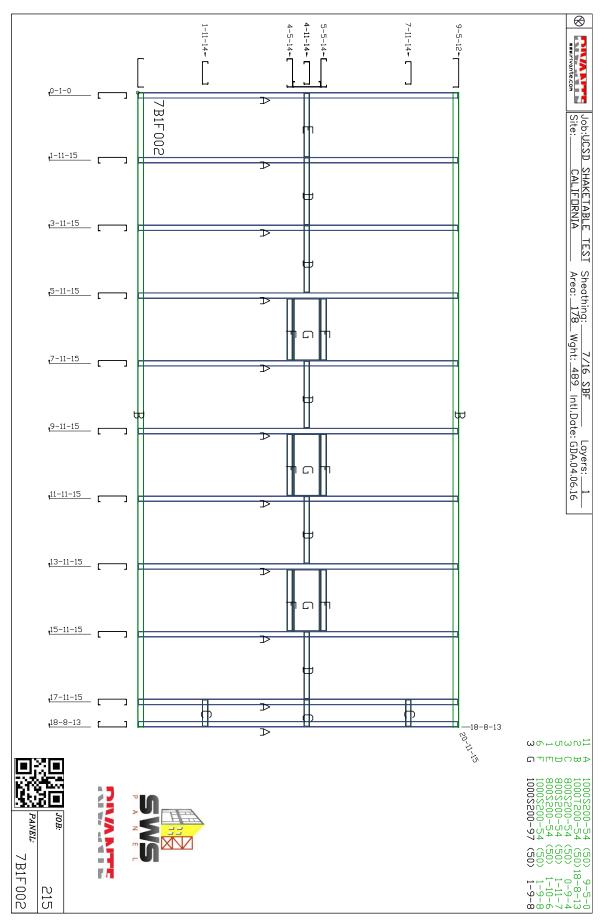


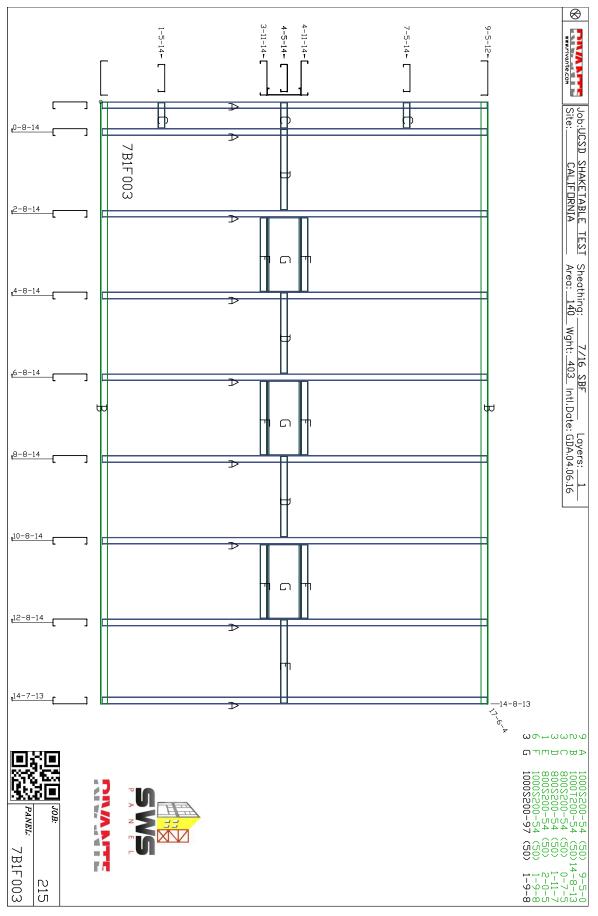


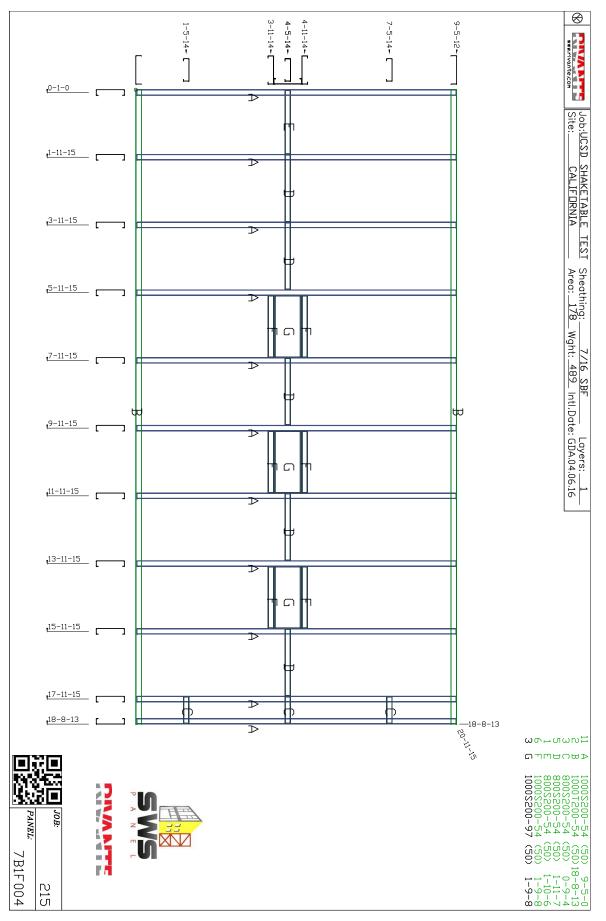


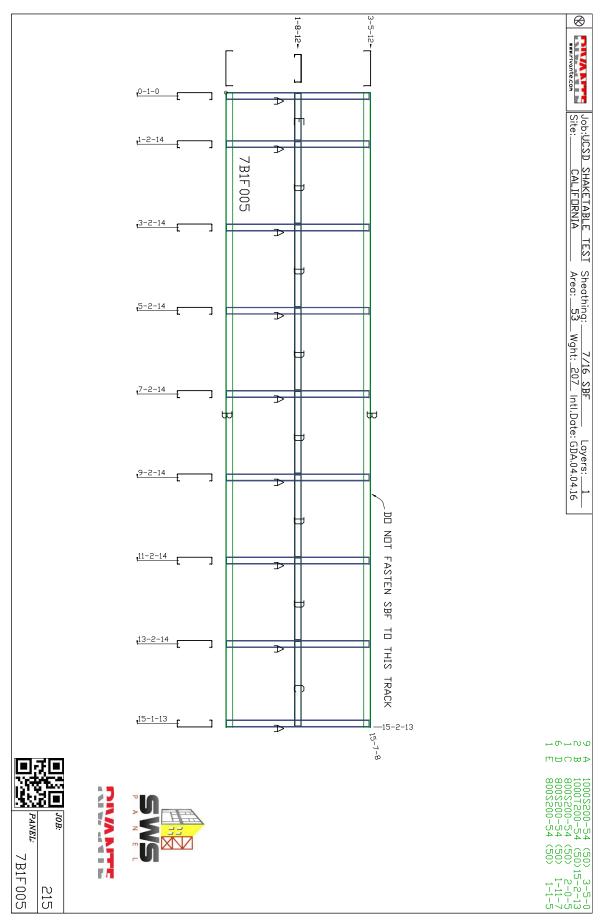


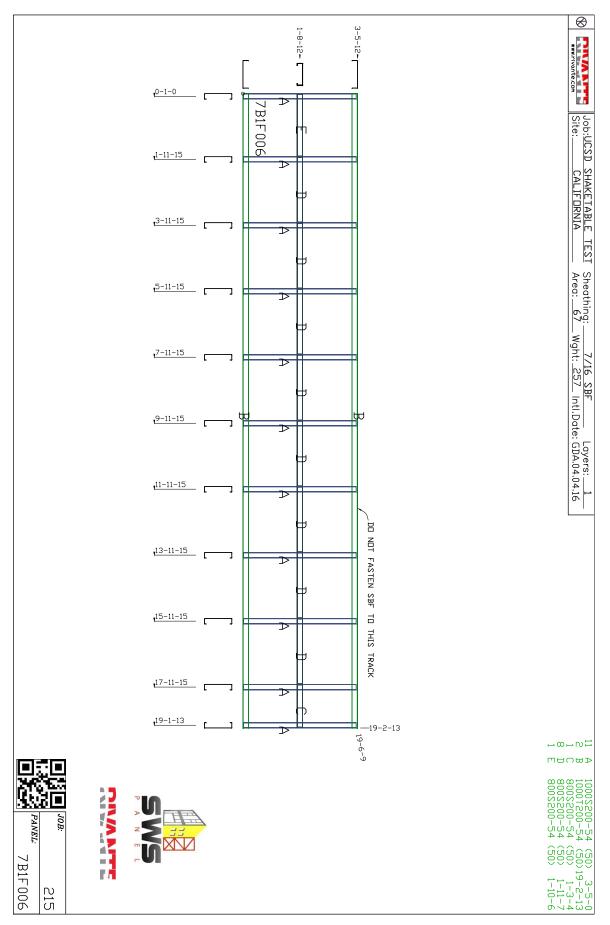


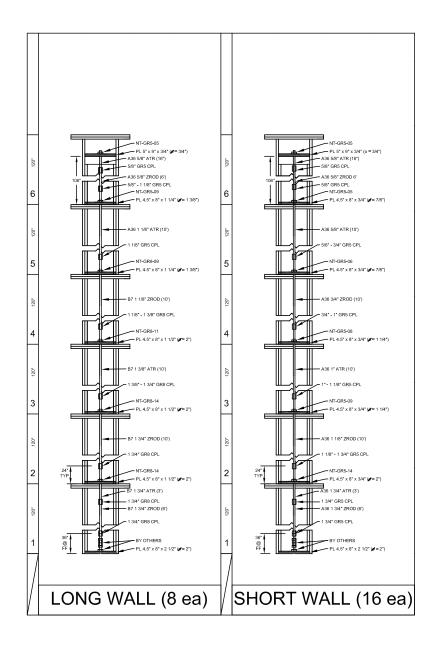












STRUCTURAL TIE-ROD SYSTEM

Name: UCSD Shake Table Address: Customer: Contact:

 Number:

 Region:
 United States

 Jurisdiction:
 Los Angeles - WD*

Z4 Quick Connect Run Detail (Short Walls)

Level	Floor Height (inch)	Rod	А <u>.</u> (in ²)	A _n (in ²)	ROD LENGTH (inch)	Loads (Deflection) (inch)	Deflection (inch)	Level Elongation (inch)	Stress (Ibs)	F _u (psi)	All. Stress (lbs)
		A36 5/8" ATR	0.226	0.307	10	470	0.001		1,400	60,000	6,908
		A36 5/8" ZROD(TR)	0.226	0.307	14	470	0.001		1,400	60,000	6,908
	Roof 106 (Bridge)	A36 5/8" ZROD	0.307	0.307	54	470	0.003	0.007	1,400	60,000	6,908
(bridge)		A36 5/8" ZROD(TR)	0.226	0.307	4	470	0.000		1,400	60,000	6,908
		A36 5/8" ATR	0.226	0.307	24	470	0.002		1,400	60,000	6,908
6	120	A36 5/8" ATR	0.226	0.307	96	1,478	0.022	0.025	4,400	60,000	6,908
6	120	A363/4" ZROD(TR)	0.334	0.442	24	1,478	0.004	0.025	4,400	60,000	9,945
		A363/4" ZROD(TR)	0.334	0.442	2	2,889	0.001		8,600	60,000	9,945
5	120	A363/4" ZROD	0.442	0.442	90	2,889	0.020	0.026	8,600	60,000	9,945
2	120	A363/4" ZROD(TR)	0.334	0.442	4	2,889	0.001	0.026	8,600	60,000	9,945
		A36 1" ATR	0.606	0.785	24	2,889	0.004		8,600	60,000	17,663
4	4 120	A36 1" ATR	0.606	0.785	96	4,636	0.025	0.030	13,800	60,000	17,663
4		A361-1/8" ZROD(TR)	0.763	0.994	24	4,636	0.005	0.050	13,800	60,000	22,365
		A361-1/8" ZROD(TR)	0.763	0.994	2	6,585	0.001		19,600	60,000	22,365
3	120	A361-1/8" ZROD	0.994	0.994	90	6,585	0.021	0.029	19,600	60,000	22,365
2	120	A361-1/8" ZROD(TR)	0.763	0.994	4	6,585	0.001	0.029	19,600	60,000	22,365
		A361-1/8" ATR	0.763	0.994	24	6,585	0.007		19,600	60,000	22,365
		A361-1/8" ATR	0.763	0.994	12	8,601	0.005		25,600	60,000	22,365
		A36 1-3/4" ZROD(TR)	1.9	2.405	14	8,601	0.002	1	25,600	60,000	54,113
2	120	A36 1-3/4" ZROD	2.405	2.405	54	8,601	0.007	0.014	25,600	60,000	54,113
		A36 1-3/4" ZROD(TR)	1.9	2.405	4	8,601	0.001		25,600	60,000	54,113
		by others			36	8,601			25,600		0

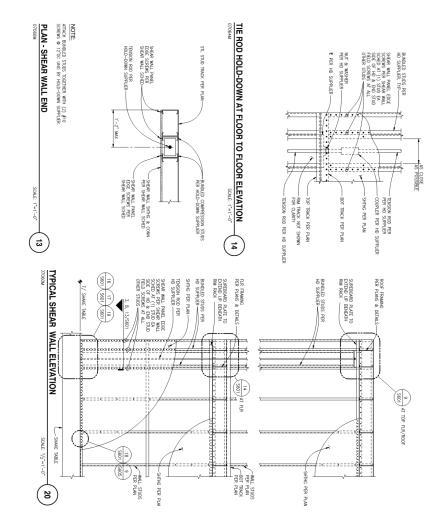
Zone4 Run Detail Report |

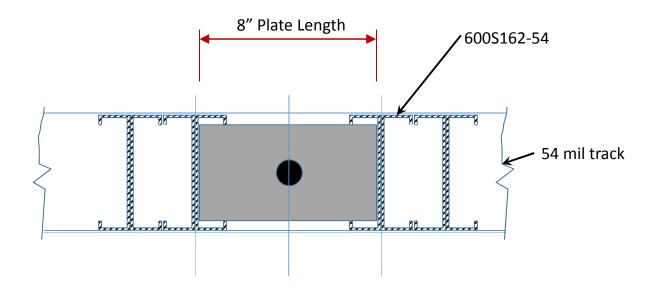
Tuesday, April 26, 2016

198

Name: UCSD Shake Table Address: Customer: Contact:

Number: Region: United States Jurisdiction: Los Angeles - WD*


Z4 Quick Connect Run Detail (LONg Walls)


level	floor to floor	Rod	Ae	An	Length	loads (deflection)	deflection	level elongation	stress	Fu	All. Stress			
level	(inch)	коа	(inch^2)	(inch^2)	(inch)	(lbs)	(inch)	(inch)	(lbs)	(psi)	(lbs)			
		A36 5/8" ATR	0.226	0.307	10	2117	0.003		6,300	60,000	6,908			
roof		A36 5/8" ZROD(TR)	0.226	0.307	14	2117	0.005	3 0.024 L	6,300	60,000	6,908			
(bridge)	106	A36 5/8" ZROD	0.307	0.307	54	2117	0.013		6,300	60,000	6,908			
(bridge)		A36 5/8" ZROD(TR)	0.226	0.307	4	2117	0.001		6,300	60,000	6,908			
		A36 1-1/8" ATR	0.763	0.994	24	2117	0.002		6,300	60,000	22,365			
6	120	A36 1- 1/8" ATR	0.763	0.994	96	6485	0.028	0.035	13,000	60,000	22,365			
0	120	B7 1-1/8" ZROD(TR)	0.763	0.994	24	6485	0.007	0.035	13,000	125,000	46,594			
		B7 1-1/8" ZROD(TR)	0.763	0.994	2	12701	0.001	4 1				18,500	125,000	46,594
5	120	B7 1-1/8" ZROD	0.994	0.994	90	12701	0.040		18,500	125,000	46,594			
5	120	B7 1-1/8" ZROD(TR)	0.763	0.994	4	12701	0.002	0.052	18,500	125,000	46,594			
		B7 1-3/8" ATR	1.16	1.485	24	12701	0.009		18,500	125,000	69,609			
4	120	B7 1-3/8" ATR	1.16	1.485	96	13461	0.038	.038 0.044	22,500	125,000	69,609			
4	120	B7 1-3/4" ZROD(TR)	1.9	2.405	24	13461	0.006		22,500	125,000	112,734			
		B7 1-3/4" ZROD(TR)	1.9	2.405	2	21928	0.001	³ 0.040	25,200	125,000	112,734			
3	120	B7 1-3/4" ZROD	2.405	2.405	90	21928	0.028		25,200	125,000	112,734			
3	120	B7 1-3/4" ZROD(TR)	1.9	2.405	4	21928	0.002		25,200	125,000	112,734			
		B7 1-3/4" ATR	1.9	2.405	24	21928	0.010		25,200	125,000	112,734			
		B7 1-3/4" ATR	1.9	2.405	12	30866	0.007	4	26,600	125,000	112,734			
		B7 1-3/4" ZROD(TR)	1.9	2.405	14	30866	0.008		26,600	125,000	112,734			
2	120	B7 1-3/4" ZROD	2.405	2.405	54	30866	0.024	0.041	26,600	125,000	112,734			
	[B7 1-3/4" ZROD(TR)	1.9	2.405	4	30866	0.002] [26,600	125,000	112,734			
		by others			36	30866			26,600		0			


Zone4 Run Detail Report |

Tuesday, April 26, 2016

Pu = 45.6 Kips (LRFD); fy = 50 ksi

Each side = 22.8k; A = [5"+ 1.625"(2)](0.054)2 = 0.891 sq.in.

phiPn = 0.9(0.6)50(0.891) = 24 kips > 22.8 kips, OK

Revise to 4.5" plate: Pu = 45.6 Kips (LRFD); fy = 50 ksi

Each side = 22.8k; A = [4.5" + 1.625"(2)](0.054)2 = 0.837 sq.in.

phiPn = 0.9(0.6)50(0.837) = 22.6 kips ≥ 22.8 kips, OK

Just C		A Noch to cyn Hems. Cun	ile court iplanned issue)
Er V	- Couplers Grade	5-	
		Long wall - Seach	
N 35 56	- 13/4 gr5	0 13/ 20 00 78	Levels
J 8	- 118 955 V	8-134×7287.2R	1
(1) 27 40	- 5/8 gr 5 Orde	V-V8-134 × 36 B7 - ATR	1 ±tP
		· 8-13/4 × 120 B7 - ZR	2
I 8	- 13/8 × 13/4 gr5	8- 13/8 × 120 B7 - ATR	3
	-11/8 × 13/4 915	· 8-11/8 ×120 B7 - 2R1	4
I 8	- 11/8 × 13/8 gr5	8.11/8×120 A36- ATR	5
	-1×11/8 915	8-5/8×72 #35-22	6
CNS # 16	- 3/4 × 195 01	der - 8- 5/8 × 16" A36 · ATR	6 ITP
CNI 1 8	- 5/8×11/8915		
0NS 5 16	- 5/8 x 3/4 gr5		
		Short Wall - 16 pad	
	- NTS-2H-		Lavels
		· 16 - 134 × 72 #35-27	
. 31	2- 134" HW HX 2H	Order-16-13/4 × 36" A30-1	
8	- 13/8" Huy Hx 2H	· B7-EP16 - 1/8 × 120 .87 . 3	
3	2- 11/8" Huy Hx 24	Ordon-16-1 × 120 A36 - A	HR - 3 Baysd
l	o- I" Huy Hy ZH	16- 34 ×120 #35 - 2	<u>ч</u>
HE	6- 3/4" Huy Hx 2H (m	emo) abor - 16 - 5/8 × 120 A36 . A	TR S Bays
Ч	0- 5/8" Huy Hx ZH	16-5/8×72 #35-2	R 6
		over-16-5/8 x16 A36-1	ATR 6-TTP
			5
$\langle 1 \rangle$			

N	BPW'S					
<u>Levels</u> -	<u>Hole </u> 21/8°- 8		$\frac{3}{8}$	<u>Y</u> Ø	<u>5</u> Ø	6
5×9×34	= 24 - 3/4" - = 24	ø ø	8	0	ø	8,16
	- 32		8		16	16
442 ×8 × 34 TOTAL 442 ×8× 34	= 32		161	16	0.	0
TOTAL 71/2×8×11/4 TOTAL	= 16 = (<u>38</u> ° - = 16	00	Ø	Ø	8 🗸	8
442×8×142 TOTAL	- 2"-	S 8	8 /	8	Ð	0
R						

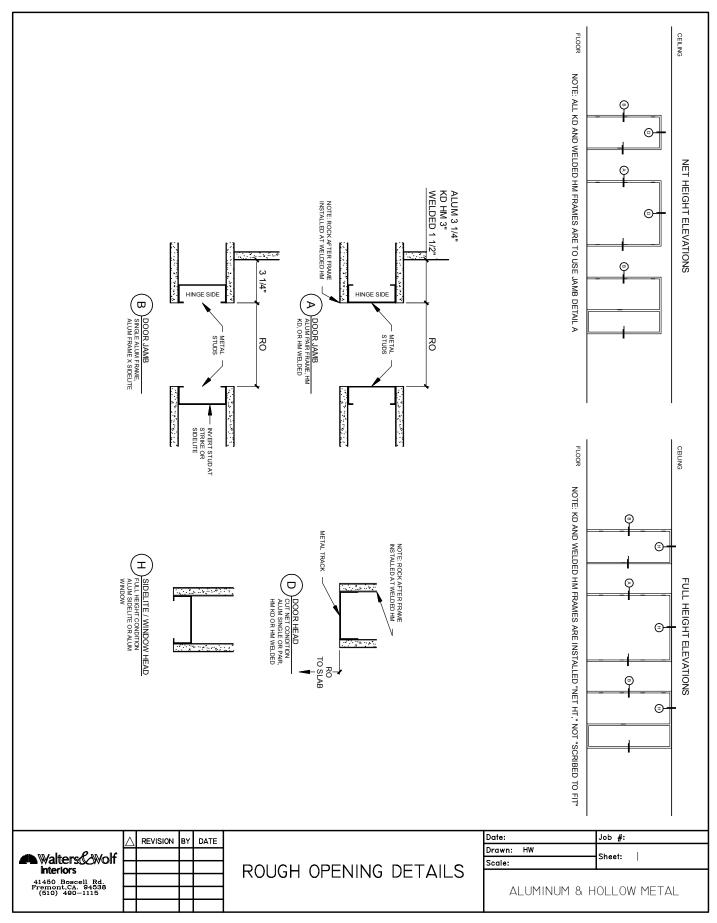
U	ED PRODUC	an TS, INC.	Vulcan Thre 10 Cross Cr Pelham, AL Tel (205) 62 Fax (205) 62	eek Trail 35124 0-5100	cts		JOB	MATE	RIAL	CERT	IFICA	TIO
	Job No: 451805				Job	Informa	tion	C	Certified Date: 1/19/16			
	Contai	ners: S	10574418 10580338	S1057525 S1058631	6 S105760 1	075 S105	76520 S1	0578555 \$	6105786 <i>°</i>	2 S10579	195 S105	79744
	Cust	omer: D'	DYWIDAG-Systems						Ship		Marmon Dr gbrook, IL	
Cus	tomer Pa	rt No: HI	RB 4140 1.8	750x540 A	434 BD 🗸							
Cı	stomer P	O No: po	424951						Shipped	Qty: 4692	2 lbs	
	Orde	er No: 26	269854						Line	No: 3		
		Note:										
					Applical	ble Specif	ications					
Туре			Specification					Rev		Amend	Op	otion
	-		Vulcan A722 Modified					2015				
H	eat Treat		A434 BD					2015				
			Customer Specification									
	Quality		EN 10204 3.1					2004				
est Resu	lts							200 B.				
ee followi	ng pages f	or tests										
					Certified	Chemical	Analysis					
c 🗸	Mn	Heat N	o: 58024132/						Origin:			
0.400	0.82	0.011	0.011	Si 0.25	Cr 0.86	Mo 0.16	Ni 0.15	V	Cu	AI	Sn	Ti
N	0.82 DI	Grain	Macro S	Macro R	Macro C	0.16 J1	0.15 J2	0.003 J3	0.24 J4	0.027 J5	0.007 J6	0.00 J7
0.0076	4.63	OK	1	1	1	57	57	57	57	57	54	52
J8	J9	J10	J12	J14	J16	J18	J20	J24	J28	J32		1
51	50	48	46	44	41	40	39	37	35	33		
						Notes						
Material was 3/23/11. Pro material. Me Document is	manufactu cessed mat Ited and Ma in accorda erial was gu	red, tested erial is Que anufactured nce with El enched an	and inspecte enched and T in the USA. V 10204 - 3.11 d tempered to	d in accorda empered - S B of 2004 (3	ince with Vulc Stress Free. N	Notes can Threade to weld repa	d Products ir performe	Inc. Quality A	Assurance F erial. No Me	Program and rcury used in	the product	tion of

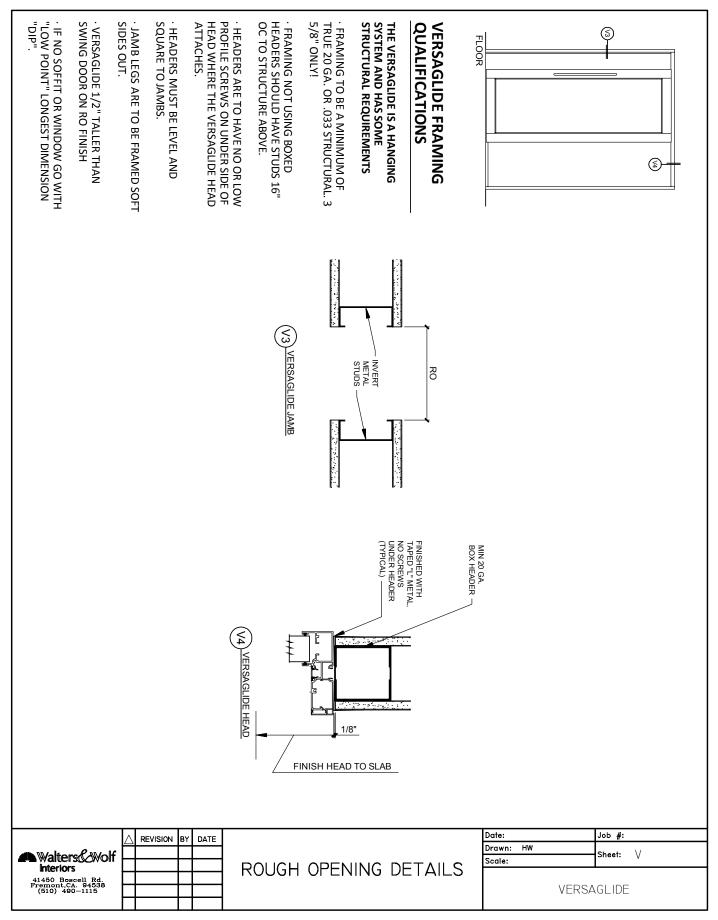
Plex 1/19/16 1:35 PM vulc.cnat Page 1 of 2

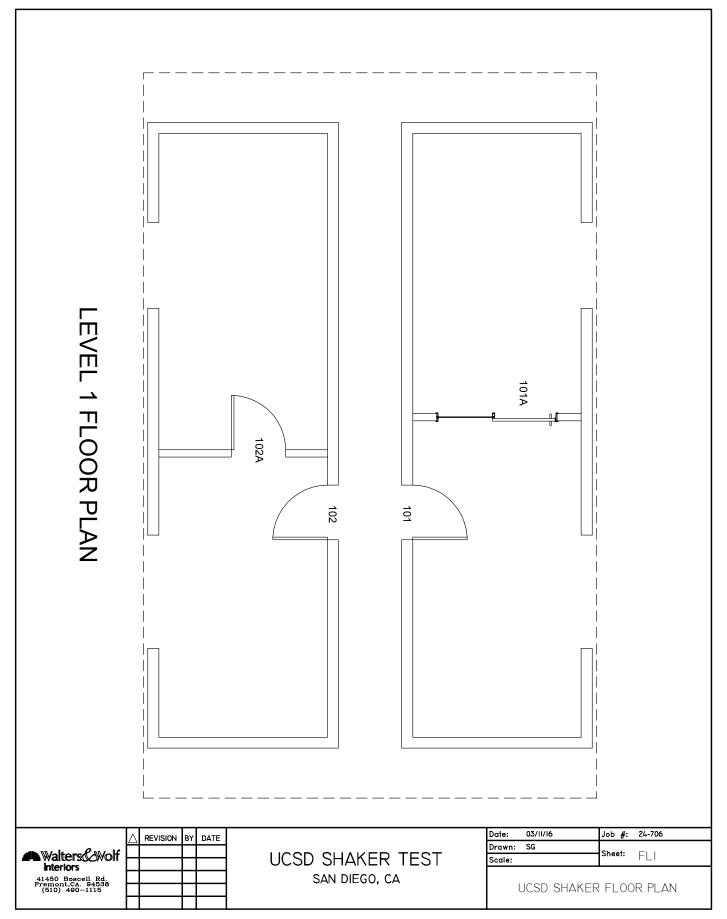
Vulcan Threaded Products 10 Cross Creek Trail Pelama, AL 35124 Tel (205) 620-5100 Fax (205) 620-5150						JOB	MATEF	RIAL CE	RTIFIC	ATIO	
Job No: 451805					Job Information Certified Date: 1/19/10						
	Contai		74418 S105 80338 S105	75256 S10576 86311	6075 S ⁴	10576520 S1	0578555 S1	0578612 S1	0579195 S10	579744	
Test Resul	ts										
Part No: H	RB 4140	1.8750x540 A	434 BD 🕠	>							
Test No: 366	653 Test:	Quench & Tem	per Information	(Lbs)							
Descript	tion	Temperir	ng Temp (F)	Ru	1 Speed	(Ft/min)	Quench Water Temp (F)				
		1	,191		7.25	5		92.8			
	654 Test:	Customer Phys	icals Requirem	ents (KSI)							
Test No: 366		Yield 0.2%	Elongation (%)	Elongation Gage Length	ROA (%)	Midradius Hardness	Surface Hardness	Center Hardness	Hardness Test Type	Note	
	Tensile (ksi)	Offset (ksi)	(70)	ouge Longen				7			
Test No: 366 Description	(ksi) 157.5	142.8	16	4D	56	337	341		HBW		
	(ksi)				56 56	337 341	341 350		HBW HBW		

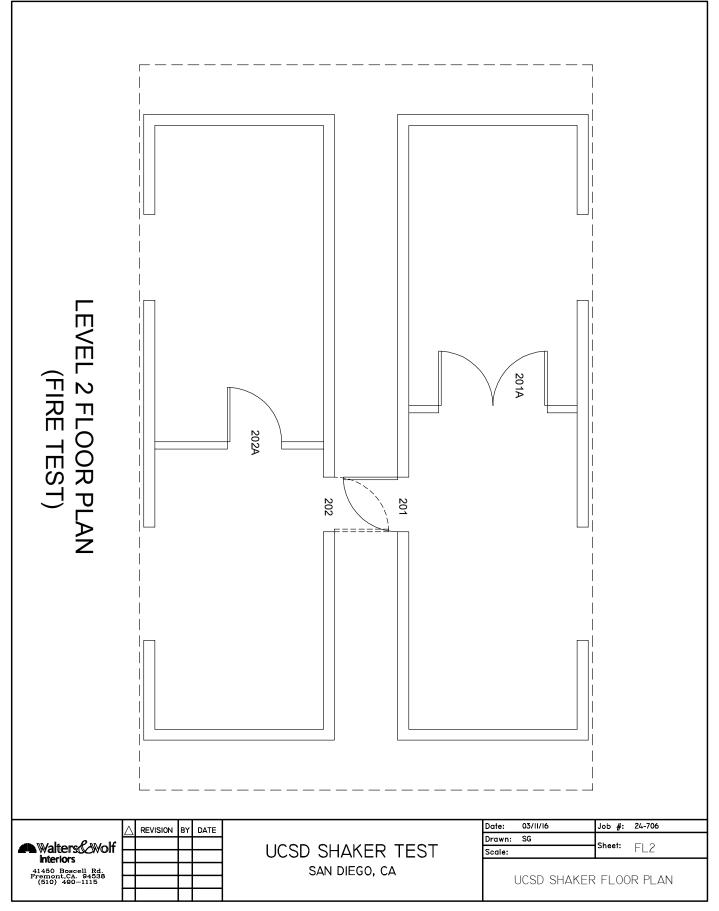
_

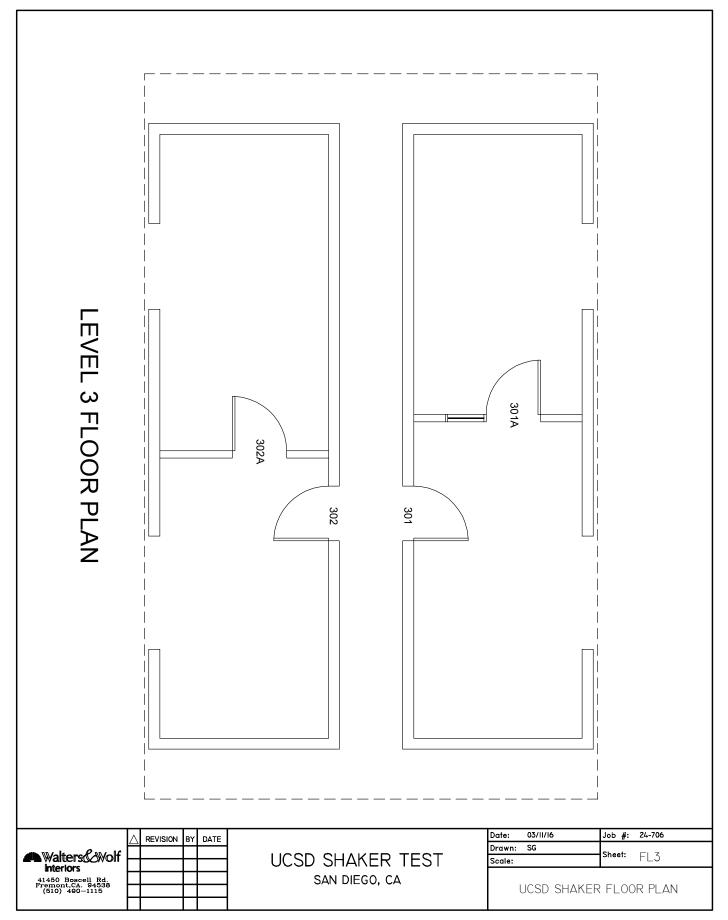
207

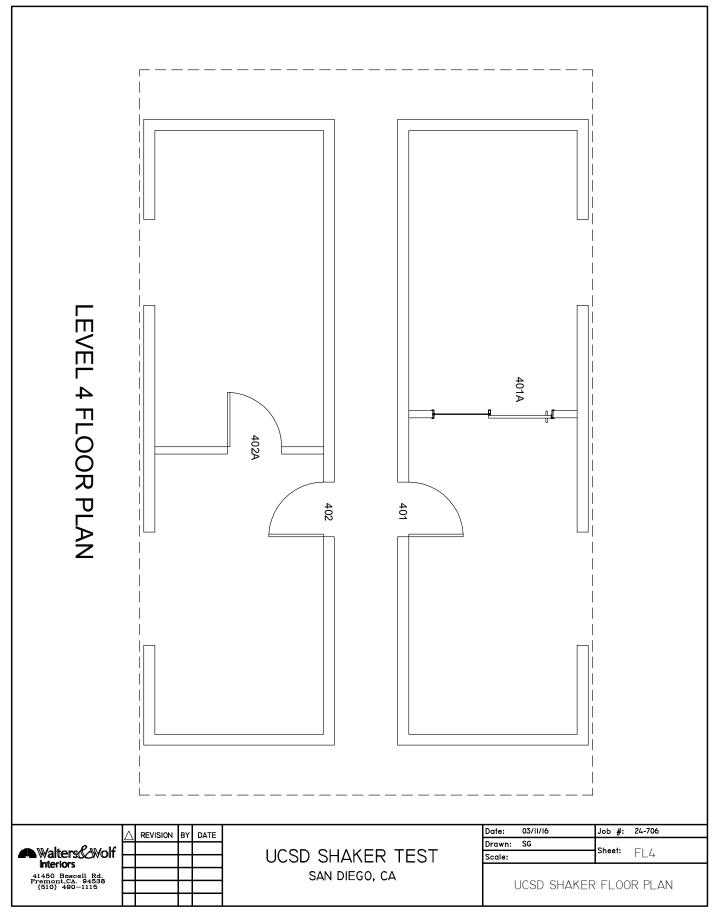

B465307/0 90 14Aug15 11:24 TEST CERT	FIFICATE No: 1 114338
., KREHER STEEL COMPANY, LLC. 1550 NORTH 25TH AVENUE MELROSE PARK, IL 60160 Tel: 708-345-8180 Fax: 708-345-8293	P/O No 420218 Rel S/O No 1 281106-001 B/L No Shp Inv No Inv
Sold To: (4470) DYWIDAG SYSTEMS INTERNATIONAL 320 MARMON DRIVE BOLINGBROOK, IL 60440	Ship To: (1) DYWIDAG-HEADQUARTERS CARL NASH-REC.MGR 320 MARMON DR. BOLINGBROOK, IL 60440
Tel: 630-739-1100 Fax: 630-972-9604	
	TESTS Cert. No: 1 114338 14Aug15
Part No <u>B46E3071090</u> COLD DRAWN TUBE PIECES 1035 3.125" X 1.815" X 6.8000"	0
100% MELTED AND MANUFACTURED IN THE UNITED HEAT ANALYSIS ARE REPORTED IN WRIGHT PERCEN TENSILE (105 KSI MIN) 119,679 YIELD (90 KSI MIN) 98,682 ELONG (15% MIN) 28.1	
Heat Number A151081 C=<.35> Mn <.89> P<.009> S Cr=<.15> Mo=<.04> Al=<.03>	*** \$<.016> Si=<.28> Cu=<.1> Ni=<.05>
I hereby certify that this data is correct contained in the records of this company. I hereby certify that no mercury came in co with or no weld repair was done to this pro while in our possession.	ontact
lay marin	_
	77 - X
	bkp
Page: 1 Last	

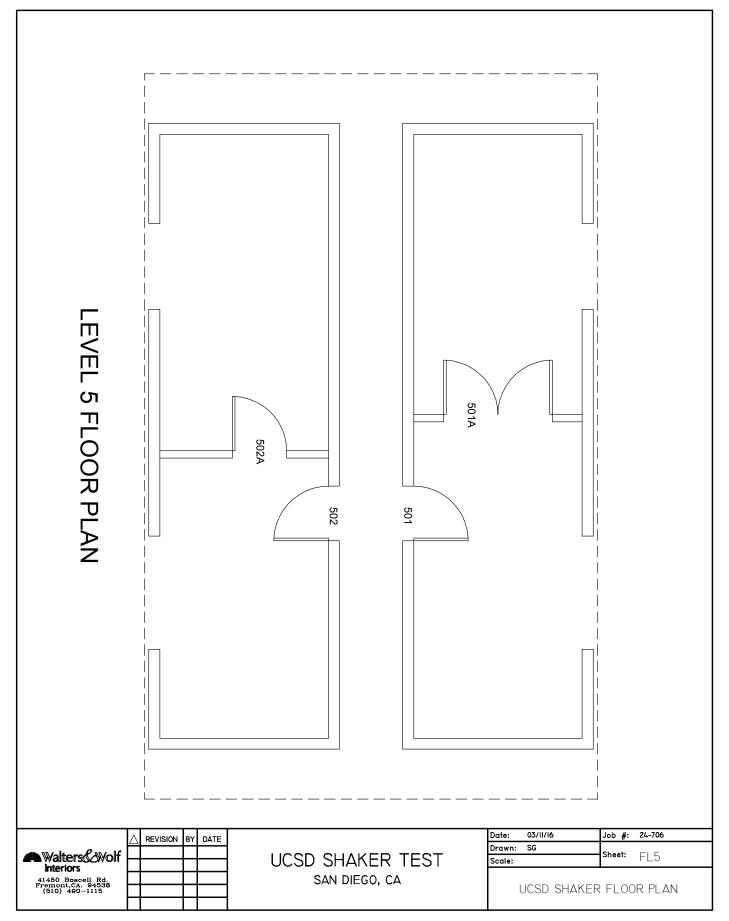

DOOR SPECIFICATIONS AND INSPECTION SHEETS

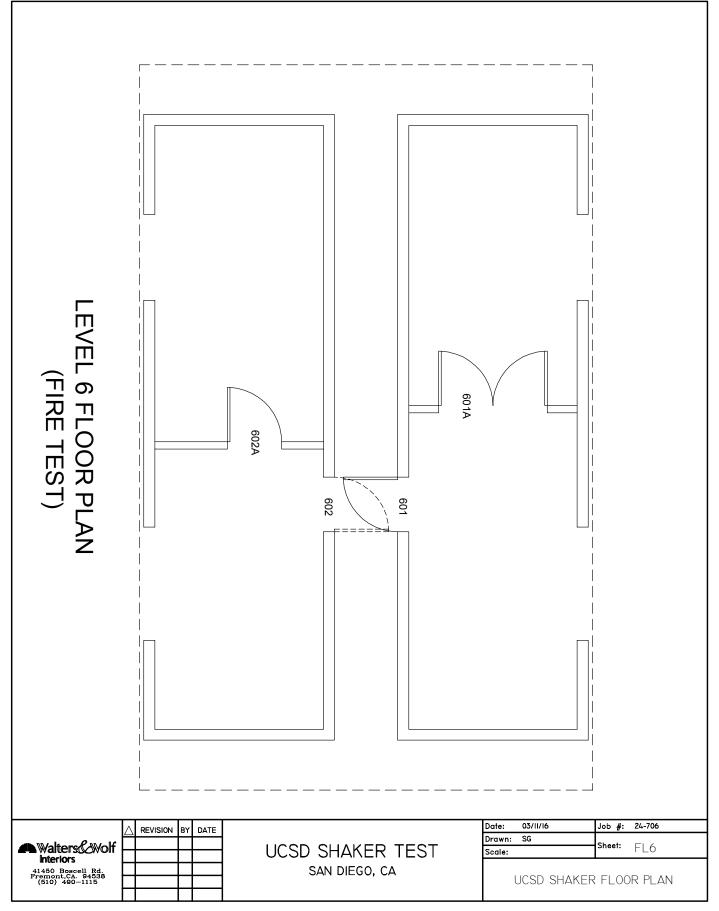

602A	602	601A	601	502A	502	501A	501	402A	402	401A	401	302A	302	301A	301	202A	202	201A	201	102A	102	101A	101	OPEN NO.				
6THFLOOR SOUTH ROOM	6TH FLOOR SOUTH COORIDOR	6TH FLOOR NORTH ROOM	6TH FLOOR NORTH COORIDOR	5TH FLOOR SOUTH ROOM	5TH FLOOR SOUTH COORIDOR	5TH FLOOR NORTH ROOM	5TH FLOOR NORTH COORIDOR	4TH FLOOR SOUTH ROOM	4TH FLOOR SOUTH COORIDOR	4TH FLOOR NORTH ROOM	4TH FLOOR NORTH COORIDOR	3RD FLOOR SOUTH ROOM	3RD FLOOR SOUTH COORIDOR	3RD FLOOR NORTH ROOM	3RD FLOOR NORTH COORIDOR	2ND FLOOR SOUTH ROOM	2ND FLOOR SOUTH COORIDOR	2ND FLOOR NORTH ROOM	2ND FLOOR NORTH COORIDOR	1ST FLOOR SOUTH ROOM	1ST FLOOR SOUTH COORIDOR	1ST FLOOR NORTH ROOM	1ST FLOOR NORTH COORIDOR	LOC	G	INTERIORS	Walterscwolf	
Ŧ	둒	RHA	뜎	Ŧ	Ŧ	RHA	곳	Ŧ	Ŧ	LH OPEN	포	Ŧ	Ē	목	목	Ŧ	듔	RHA	HR HR	Ŧ	г	LH OPEN	포	HAND	GENERAL INFO	IORS	Wol	
3/0X8/0	3/0X7/0	3/0-3/0X8/0	3./0X7/0	3/0X7/0	3/0X7/0	3/0-3/0X7/0	3/0X7/0	3/0X7/0	3/0X7/0	3/5 1/2X8/10 SLIDER	3/0X7/0	3/0X8/0	3/0X7/0	3/0X8/0	3/0X7/0	3/0X7/0	3/0X7/0	3/0-3/0X7/0	3/0X7/0	3/0X8/10	3/0X8/0	3/5 1/2X8/10 SLIDER	3/0X8/0	OPEN SIZE	- INFO		_	
20 MIN / S	20 MIN / S	20 MIN / S	20 MIN / S	NON RATED	NON RATED	NON RATED	NON RATED	NON RATED	NON RATED	60 MIN / S / T 250	60 MIN / S / T 250	60 MIN / S / T 250	60 MIN / S / T 250	NON RATED	NON RATED	NON RATED	NON RATED	FIRE LABEL		PROJECT MGR:	PROJECT NAME:							
602 A	602	601A	601	502 A	502	501A	501	402 A	402	401A	401	302 A	302	301A	301	202 A	202) 201A	201	102 A	102	101A	101	MARK / TYPE		MGR:	NAME:	
HMD 18 GA HCC CYL	HMD 18 GA HCC MORT	WDR 5PLY PBC MCC/MCC	WDR 5PLY PBC RP	HMD 18 GA HCC CYL	HMD 18 GA HCC MORT	WDR 5 PLY PBC CYLMFB	WDR 5 PLY PBC MORT	WDR 5PLY PBC CYL	WDR 5PLY PBC MORT	ALD STOREFRONT NB	WDR 5PLY PBC MORT	HMD 18 GA HCC CYL	HMD 18 GA HCC MORT	WDR 5PLY PBC CYL	WDR 5PLY PBC MORT	WDR 5 PLY MC CYL	WDR 5 PLY MC MORT	HMD 18 GA MORT / AFB	WDR 5 PLY MC MORT	HMD 18 GA HCC CYL	HMD 18 GA HCC MORT	ALD STOREFRONT MORT	WDR SPLY PBC CYL	DOOR CONST		Nate Marshall	5	
PRIMED	PRIMED	PLAIN SLICED WHITE MAPLE / CLEAR	PLAIN SLICED WHITE MAPLE / CLEAR	PRIMED	PRIMED	PAINT GRADE BIRCH / UNFINISHED	CLEAR ANO	PAINT GRADE BIRCH / UNFINISHED	PRIMED	PRIMED	PAINT GRADE BIRCH	PAINT GRADE BIRCH / UNFINISHED	PLAIN SLICED WHITE MAPLE / CLEAR	PLAIN SLICED WHITE MAPLE / CLEAR	PRIMED	PLAIN SLICED WHITE MAPLE / CLEAR	PRIMED	PRIMED	CLEAR ANO	PAINT GRADE BIRCH	door Finish	DOORS	all	UCSD SHAKER TEST				
	24X30 VL		24X30 VL						-				24X30 VL		24X30 VL							LITE		VISION LITES OR LOUVERS			ST	
	1,4" CWG		1,4" CWG							1/4" CTG			1/4" CTG		1/4" CTG							1/4" CTG		GLASS TYPE		p	5	
602A	602	601A	601	502A	502	501A	501	402A	402	401A	401	302A	302	301A	301	202A	202	201A	201	102A	102	101A	101	FRAME TYPE (ELEV)		DATE:	JOB #	
HMF 16 GA WLD 20 MIN	HMF 16 GA KD 20 MIN	HMF 16 GA WLD	ALF 1" TRIM 20 MIN	HMF 16 GA WLD	HMF 16 GA KD	ALF 1" TRIM	HMF 16 GA KD	HMF 16 GA WLD	HMF 16 GA KD	ALFVG	ALF 1" TRIM	HMF 16 GA WLD	HMF 16 GA KD	ALF 1" TRIM	ALF 1" TRIM	HMF 16 GA WLD 60 MIN	HMF 16 GA KD 60 MIN	HMF 16 GA WLD 60 MIN	ALF 1" TRIM 60 MIN	HMF 16 GA WLD	HMF 16 GA KD	ALFVG LOCK	ALF 1" TRIM	FRAME CONST				
PRIMED	PRIMED	PRIMED	CLEAR ANO	PRIMED	PRIMED	CLEAR ANO	PRIMED	PRIMED	PRIMED	CLEAR ANO	CLEAR ANO	PRIMED	PRIMED	CLEAR ANO	CLEAR ANO	PRIMED	PRIMED	PRIMED	CLEAR ANO	PRIMED	PRIMED	CLEAR ANO	CLEAR ANO	FRAME FINISH	FRAMES	3/21/2016	24-706	DOOR FRAME
										3/0X8/10 SL				2/0X8/0 SL								3/0X8/10 SL		SIDELITE AND OR TRANSOM		16	0.	DOOR FRAME HARDWARE SCHEDULE
										1/4" CTG				1/4" CTG								1/4" CTG		GLASS TYPE			Þ	HEDULE
u a	7 1/2	on On	7 1/2	on On	7 1/2	un Un	7 1/2	u .	7 1/2	un .	7 1/2	cn	7 1/2	on ()	7 1/2	cn	7 1/2	cn	7 1/2	ся	7 1/2	u	7 1/2	WALL SIZE			ARCH DWG REV #	
602.A N	602 V	601A N	601 V	502A N	502 M	501A N	501 N	402A N	402 N	401A RC	401 · N	302A N	302 M	301A N	301 · N	202.A N	202 M	201A N	201 N	102.A N	102 N	101A RC	101 N	HDWR GROUP			3 REV	
NE 5BB1 4.5X4.5 .134 652 (4 EA.)	NE 5BB1 4.5X4.5 .134 652 (4 EA.)	NE 5BB1 4.5X4.5 .134 652 (8 EA.)	NE 5BB1 4.5X4.5 .134 652 (3 EA.)	NE 5BB1 4.5X4.5 .134 652 (3 EA.)	NE 5BB1 4.5X4.5 .134 652 (3 EA.)	NE 5BB1 4.5X4.5 .134 652 (6 EA.)	VE 5BB1 4.5X4.5 .134 652 (3 EA.)	NE 5BB1 4.5X4.5 .134 652 (4 EA.)	NE 5BB1 4.5X4.5 .134 652 (4 EA.)	VERSAGLIDE ROLLER PACKAGE (1 EA.)	NE 5BB1 4.5X4.5 .134 652 (4 EA.)	VE 5BB1 4.5X4.5 .134 652 (4 EA.)	NE 5BB1 4.5X4.5 .134 652 (3 EA.)	.134 652 (4 EA.)	NE 5BB1 4.5X4.5 .134 652 (4 EA.)	NE 5BB1 4.5X4.5 .134 652 (3 EA.)	NE 5BB1 4.5X4.5 .134 652 (3 EA.)	NE 5BB1 4.5X4.5 .134 652 (6 EA.)	NE 5BB1 4.5X4.5 .134 652 (3 EA.)	NE 5BB1 4.5X4.5 .134 652 (4 EA.)	NE 5BB1 4.5X4.5 .134 652 (4 EA.)	VERSAGLIDE ROLLER PACKAGE (1 EA.)	NE 5BB1 4.5X4.5 .134 652 (4 EA.)	HANGING DEVICE				
SCH ND10S RHO 626 (1 EA.)	SCH L9010S 06A 626 (1 EA.)	SCH LM9210F 06 LH/RH 8' 626 (2 EA.)	VON 99L-F 992 3' NO CYL RHR 626 (1 EA.)	sc	SCH L9010S 06A 626 (1 EA.)	SCH ND10S RHO 626 (1 EA.)	SCH L9010S 06A 626 (1 EA.)	SCH L9010S 06A 626 (1 EA.)	SCH L9010S 06A 626 (1 EA.)		SCH L9010S 06A 626 (1 EA.)	SCH ND10S RHO 626 (1 EA.)	SCH L9010S 06A 626 (1 EA.)	SCH ND10S RHO 626 (1 EA.)	SCH L9010S 06A 626 (1 EA.)	SCH ND10S RHO 626 (1 EA.)	SCH L9010S 06A 626 (1 EA.)	SCH L9010S 06A 626 (1 EA.)	SCH L9010S 06A 626 (1 EA.)	SCH L9010S 06A 626 (1 EA.)	Q	ACC SDL 2001 W/ DBL7200 ADA 626 (1 EA.)	S	SECURING DEVICE				
0			64	0		O GJ FB358 626 (1 PR)	8				-	0	4	0		0		4 GJ FB31 626 (1 PR)	4		~	Þ	0	SECURING DEVICE 2		WWI REV. #		
						500				RWD RM 2110 36" BTOB 630 (1 PR)								0				RWD RM 2110 36" BTOB 630 (1 PR)		OPERATING TRIM				
										2 oj								GJ COR52 FL20 PRIMED (1 EA.)				2 oj		PAIR ACCESSORIE S	HARDWARE			
LCN 4041 689 (1 EA.)	LCN 4041 689 (1 EA.)	LCN 4041 689 (2 EA.)	LCN 4041 689 (1 EA.)													LCN 4041 689 (1 EA.)	LCN 4041 689 (1 EA.)	EA.) 689 (2 EA.)	LCN 4041 689 (1 EA.)					CONTROL DEVICE	ñ			
EA.) 626 (1 EA.)	941 NE FS4.36 EA.) 626 (1 EA.)	¥1 A.)	241 IVE FS436 EA.) 626 (1 EA.)	NE FS4.36 626 (1 EA.)	NE FS436 626 (1 EA.)	NE FS436 626 (2 EA.)	NE FS436 626 (1 EA.)	NE FS436 626 (1 EA.)	NE FS436 626 (1 EA.)		NE FS436 626 (1 EA.)	NE FS436 626 (1 EA.)	NE FS436 626 (1 EA.)	NE FS436 626 (1 EA.)	NE FS436 626 (1 EA.)	241 NE FS436 EA.) 626 (1 EA.)	241 IVE FS436 EA.) 626 (1 EA.)	241 NE FS436 EA.) 626 (2 EA.)	241 NE FS436 EA.) 626 (1 EA.)	NE FS436 626 (1 EA.)	IVE FS436 626 (1 EA.)		NE FS436 626 (1 EA.)	STOPS & HOLDERS				
436 PEM S88W EA.) 19' (1 EA.)	436 PEM S88W EA.) 19' (1 EA.)	PEM S88W 22' (1 EA.)	136 А.)	А) Э.)	×,	×.8	¥.)	¥.) 8	¥36)		¥.)	¥. 8	¥. €	136 (A)	А) Э)	136 PEM S88W EA.) 17 (1 EA.)	136 PEM S88W EA.) 17 (1 EA.)	436 PEM S88W EA.) 20' (1 EA.)	136 }	136)>)	136 (A)		¥. €	ACCESSORIE				
€) BW	€. ₩	8W PEM S77W 8 A.) (1 EA.)														SW 2.)	r) BW	8W PEM S77W 7 A.) (1 EA.)						ACCESSORIE S 2				
) 8" PEM 355CS 8" (1 EA.)				PEM 355CS 8" (1 EA.)												W 7 AST BY HM) DR MNFR 7' (1 EA.)						MISC. HARDWARE				PAGE 1 of 1
		°.°				~ S												1M 1 7'						NOTES				-


			DOO	R FRAME HA	RDWARE	SCHEDUL	E		PAGE 1 o	of 2
PROJECT N	AME:		U	CSD SHA	KER T	EST		DATE:)	(
JOB #:				24-706				REV #		1
		R	OUG	H OPEN		IFORM	IATION			
OPEN NO.	HAND	OPEN SIZE	FIRE LBL	FRAME CONST	SIDELITE OR TRANSOM	WALL SIZE	ROUGH OPENING	JAMB DETAIL	HEAD DETAIL	SILL DETAIL
101	RH	30X8/0X7 1/2	NON RATE D	ALF 1" TRIM		7 1/2	37 5/8 X 97	В	D	
101A	LH OPEN	3/4X8/10X4 7/8 SLIDER	NON RATE D	ALF VG LOCK	3/0X8/10 SL	5	82 X 108	V3	V4	
102	LH	3/0X8/0X7 1/2	NON RATE D	HMF 16 GA KD		7 1/2	38 X 97	А	D	
102A	LH	3/0X8/10X5	NON RATE D	HMF 16 GA WLD		5	41 X 108 1/2	A	D	
201	LHR	3/0X7/0X7 1/2	60 MIN / S / T 250	ALF 1" TRIM 60 MIN		7 1/2	37 5/8 X 85	В	D	
201A	RHA	6/0X7/0X5 PR	60 MIN / S / T 250	HMF 16 GA WLD 60 MIN		5	77 X 86 1/2	A	D	
202	LHR	3/0X7/0X7 1/2	60 MIN / S / T 250	HMF 16 GA KD 60 MIN		7 1/2	38 X 85	A	D	
202A	LH	3/0X7/0X5	60 MIN / S / T 250	HMF 16 GA WLD 60 MIN		5	41 X 86 1/2	A	D	
301	RH	30X7/0X7 1/2	NON RATE D	ALF 1" TRIM		7 1/2	37 5/8 X85	В	D	
301A	RH	30X8/0X5	NON RATE D	ALF 1" TRIM	2/0X8/0 SL	5	63 1/2 X 97	В	н	
302	LH	3/0X7/0X7 1/2	NON RATE D	HMF 16 GA KD		7 1/2	38 X 85	A	D	
302A	LH	3/0X8/0X5	NON RATE D	HMF 16 GA WLD		5	41 X 98 1/2	А	D	
401	RH	3/0X7/0X7 1/2	NON RATE D	ALF 1" TRIM		7 1/2	37 5/8 X 85	A	D	
401A	LH OPEN	3/4X8/10X4 7/8 SLIDER	NON RATE D	ALF VG	3/0X8/10 SL	5	82 X 108	V3	V4	
402	LH	3/0X7/0X7 1/2	NON RATE D	HMF 16 GA KD		7 1/2	38 X 85	A	D	


			DOO	R FRAME HA	RDWARE	SCHEDULI	E		PAGE 2 c	/f 2
PROJECT N	AME:		U	CSD SHA	KER T	EST		DATE:)	(
JOB #:				24-706				REV #		1
		R	OUG	H OPEN	ING IN	IFORN	IATION			
OPEN NO.	HAND	OPEN SIZE	FIRE LBL	FRAME CONST	SIDELITE OR TRANSOM	WALL SIZE	ROUGH OPENING	JAMB DETAIL	HEAD DETAIL	SILL DETAIL
402A	LH	3/0X7/0X5	NON RATE D	HMF 16 GA WLD		5	41 X 86 1/2	А	D	
501	RH	3/0X7/0X7 1/2	NON RATE D	HMF 16 GA KD		7 1/2	38 X 85	А	D	
501A	RHA	6/0X7/0X5 PR	NON RATE D	ALF 1" TRIM		5	73 1/2 X 85	A	D	
502	LH	3/0X7/0X7 1/2	NON RATE D	HMF 16 GA KD		7 1/2	38 X 85	A	D	
502A	LH	3/0X7/0X5	NON RATE D	HMF 16 GA WLD		5	41 X 86 1/2	A	D	
601	LHR	3/0X7/0X7 1/2	20 MIN / S	ALF 1" TRIM 20 MIN		7 1/2	37 5/8 X 85	A	D	
601A	RHA	6/0X8/0X5 PR	20 MIN / S	HMF 16 GA WLD		5	77 X 98 1/2	A	D	
602	LHR	3/0X7/0X7 1/2	20 MIN / S	HMF 16 GA KD 20 MIN		7 1/2	38 X 85	A	D	
602A	LH	3/0X8/0X5	20 MIN / S	HMF 16 GA WLD 20 MIN		5	41 X 98 1/2	A	D	







INSPECT	INSPECTION REPORT	Start Date Completed Date Reinspection Date
BUILDING NAME	24-706 UCSD Shaker Test	Inspector Information Name:Chris_Banda
ADDRESS	10201 Pomerado Rd	Certification: Exp. Date:
City:	San Diego	Walters and Wolf
State:	<u>CA</u> Zip: <u>92131</u> +	41450 Boscell Road, Fremont CA 94538
		Mobile DOORDATA by DOORDATA Solutions, Inc.
SUMMARY		
8 Rated Open	8 Rated Openings walked for current NFPA 80	
14 Non-rated	14 Non-rated openings inspected per Walters and Wolf standards	
	Chris Banda	

Signature of Inspector

Signature of Building Manager

SWINGING DOOR SCHEDULE

BUILDING NAME 24-706 UCSD Shaker Test

Page 1 of 3

	Door	Door Type	Fire-Rating	Door Location
-	101	Swinging		1ST FLOOR WORTH COORIDOR
	Single Door,	Single Door, Wood, Flush, Aluminum, 3 Sided Frame		<
N				
ω	102	Swinging		1ST FLOOR SOUTH COORIDOR
	Single Door,	Single Door, Hollow Metal, Flush, Hollow Metal, 3 Sided Frame		
4				
	Single Door,	Single Door, Hollow Metal, Flush, Hollow Metal, 3 Sided Frame		
U	201	Swinging	60	2ND FLOOR NORTH COORIDOR
	Single Door,	Single Door, Wood, Flush, Aluminum, 3 Sided Frame		~
6	201A	Swinging	60	2ND FLOOR NORTH ROOM
	Single Door,	Single Door, Hollow Metal, Flush, Hollow Metal, 3 Sided Frame		
7	202	Swinging	60	2ND FLOOR SOUTH COORIDOR
	Single Door,	Single Door, Wood, Flush, Hollow Metal, 3 Sided Frame		
8	202A	Swinging	60	2ND FLOOR SOUTH ROOM
	Single Door,	Single Door, Wood, Flush, Hollow Metal, 3 Sided Frame		
9	301	Swinging		3RD FLOOR NORTH COORIDOR
	Single Door,	Single Door, Wood, Vision Lite, Aluminum, 3 Sided Frame		
10	301 A	Swinging		3RD FLOOR NORTH ROOM
	Single Door,	Single Door, Wood, Flush, Aluminum, Side Lite Frame		

SWINGING DOOR SCHEDULE

BUILDING NAME 24-706 UCSD Shaker Test

	Door	Door Type	Fire-Rating	Door Location
11	302	Swinging		3RD FLOOR SOUTH COORIDOR
	Single Door,	Single Door, Hollow Metal, Vision Lite, Hollow Metal, 3 Sided Frame		
12	302A	Swinging		3RD FLOOR SOUTH ROOM
	Single Door,	Single Door, Hollow Metal, Flush, Hollow Metal, 3 Sided Frame		
13	401	Swinging		4TH FLOOR NORTH COORIDOR
	Single Door,	Single Door, Wood, Flush, Aluminum, 3 Sided Frame		
14	401A	Swinging		4TH FLOOR NORTH ROOM
	Single Door,	Single Door, Hollow Metal, Vision Lite, Aluminum, Side Lite Frame		
15	402	Swinging		4TH FLOOR SOUTH COORIDOR
	Single Door,	Single Door, Wood, Flush, Hollow Metal, 3 Sided Frame		
16	402A	Swinging		4TH FLOOR SOUTH ROOM
	Single Door,	Single Door, Wood, Flush, Hollow Metal, 3 Sided Frame		
17	501	Swinging		5TH FLOOR NORTH COORIDOR
	Single Door,	Single Door, Wood, Flush, Hollow Metal, 3 Sided Frame		
18	501A	Swinging		5TH FLOOR NORTH ROOM
	Single Door,	Single Door, Wood, Flush, Aluminum, 3 Sided Frame		
19	502	Swinging		5TH FLOOR SOUTH COORIDOR
	Single Door,	Single Door, Hollow Metal, Flush, Hollow Metal, 3 Sided Frame		
20	502A	Swinging		5TH FLOOR SOUTH ROOM
	Single Door,	Single Door, Hollow Metal, Flush, Hollow Metal, 3 Sided Frame		

Page 2 of 3 223

SWINGING DOOR SCHEDULE

BUILDING NAME 24-706 UCSD Shaker Test

Page 3 of 3

							24		23		22		21	
						Single Do	602A	Single Do	602	Single Do	601A	Single Do	601	Door
						Single Door, Hollow Metal, Flush, Hollow Metal, 3 Sided Frame	Swinging	Single Door, Hollow Metal, Vision Lite, Hollow Metal, 3 Sided Frame	Swinging	Single Door, Wood, Flush, Hollow Metal, 3 Sided Frame	Swinging	Single Door, Wood, Vision Lite, Aluminum, 3 Sided Frame	Swinging	Door Type
							20		20		20		20	Fire-Rating
					· • •		6TH FLOOR SOUTH ROOM		6TH FLOOR SOUTH COORIDOR		6TH FLOOR NORTH ROOM		6TH FLOOR NORTH COORIDOR	Door Location

SWINGING DOOR SURVEY - FIRE

BUILDING NAME 24-706 UCSD Shaker Test

16	15	14	13	12	1	10	9	8	7	0	σı	4	ω	N	-	
402A	402	401A	401	302A	302	301A	301	202A	202	201A	201		102		101	Door Number Compliant
YES	YES		YES		YES	Compliant										
NO	NO		NO		NO											
																Non-Compliance Code

Page 1 of 2 225

Page 2 of 2

SWINGING DOOR SURVEY - FIRE

BUILDING NAME 24-706 UCSD Shaker Test

				24	23	22	21	20	19	18	17	
				602A	602	601A	601	502A	502	501A	501	Door Number Compliant
				YES	YES	YES	YES	YES	YES	YES	YES	Compliant
				NO	NO	NO	NO	NO	NO	NO	NO	
												Non-Compliance Code

INSPECTION DEFINITIONS

D6 Incorrect Glass in Light(s)D7 Broken Glass in Light(s)	D1Missing Door(s)D2Missing LabelD3Damaged Door(s)D4Rust-through on Door(s)D5Delamination of Door Skin orFace	F12 Unused Fastener Hole(s) in Frame F13 F14 F15 F16 DOOR	a ≤ z () z	 F2 Damaged Frame F3 Rust-though on Frame F4 Missing Label F4 Missing Label F5 Frame is Out of alignment F6 Incorrect Glass in Sidelight or Transom-light F7 Broken Glass in Sidelight or Transom-light 	õ
 Function Property T9 T10 T11 T12 T12 	NOT Allow Door to Close T5 Door Bottom Drags Against Floor Material T6 Door Rubs Against Frame T7 Edges of Paired Doors Overlap T8 Coordinator Does NOT	T1 Door Does NOT Swing Freely T2 Door Does NOT Close Completely T3 Door Does NOT Securely Latch T4 Electric Door Release Does	D15 Replace Door D16 D17 D18 D19 D19 OPERATIONAL TEST	 D9 Loose Light Kits D10 Missing Light Kit Screw(s) D11 Improper Field Modification (Explain Modification) D12 Incorrect Hardware Preparation (Explain) D13 Unused Fastener Hole(s) D14 Improper Plant-ons 	ă
	B10 B11 B12 B13	 B5 Bottom Bolt does NOT Engage Strike B6 Missing Bolt Head (Top) B7 Missing Bolt Head (Bottom) B8 Missing Rub Plate(s) B9 Incorrect Type of Flush Bolt(s) 	DOOR BOLTS B1 Missing Top Flush Bolt B2 Missing Bottom Flush Bolt B3 Missing Strike (Top Bolt) B4 Missing Strike (Bottom Bolt)		Z
E8 Non-fire Rated Panic Hardware (Dogging) E9 Missing Lever or Knob E10 E11 E11	(Bottom) E4 Missing Strike(s) E5 Missing Vertical Rod (Top) E6 Missing Vertical Rod (Bottom) E7 Push Bar Does NOT Extend Halfway Across Door Width	XIT HARDWAF sing Fire Exit Dev sing Latch Bolt As sing Latch Bolt As	$0 = 0 \\ 0 = 4$	 L2 Incorrect Latch Bolt Throw L3 Non-fire Rated Latch Bolt L4 Latch Bolt Binds L5 Latch Bolt Missing L6 Loose Lever(s) or Knob(s) L7 Latch Bolt Does NOT Engage Strike L8 Missing Strike Plate 	X
	p) end	mbly	Strike	Bolt bb(s)	
	p) and	C14 (Surfac C15 The Mbly C17 The C18	C8 Missing Drop and/or Adapter Plate(s) C9 Hold-open Arm(s) C10 Missing Coordinator C11 Missing Carry Bar C12 Broken Coordinator C13 Broken Carry Bar	row olt C2 Leaking Door Closer(s) C3 Missing Arm(s) C4 Broken Arm(s) C5 Missing Closer(s) C6 Does NOT Close Door Completely C7 Missing Screw(s)	DOOR CLOSERS C1 Missing Door Closer(s)

E13

APPLIANCES SPECIFICATIONS

State	e Farm/II	BHS items	in CFS Bu	uilding on	State Farm/IBHS items in CFS Building on UCSD shake table	e table		8/18/16
		Product Dimensions	nensions		Weight			
Appliances	No.	D (in.)	W (in.)	H (in.)	empty (lb.)	full (lb.)	Base	Remarks
Electric Range -	4	28.406	29.875	47.75	140	N/A	4 Feet	Color: White
Kenmore 93012								
(4.9 cu.ft.)								
	4	28.406	29.875	47.75	168	N/A	4 Feet	Color: Black
Gas Range - Kenmore								
73239 (4.2 cu.ft.)								
HDTV - RCA	1	3.6	54	31.8	47.3	N/A	N/A	with earthquake
RLED60B55R120Q								wall mount
(60 in.)								
HDTV - Samsumg	1	3.7	54.1	31.5	50.7	N/A	N/A	with standard
UN60J6200								wall mount
(60 in.)								
Electric Water Heater -	3	20.5	round	49.75	06	425.3	Flat	1 unit filled with sand
Whirlpool (40							Bottom	(added 250 lb.)
gal.)								
Gas Water Heater -	ω	19.75	round	61	135	470.3	3 Legs	Envirotemp made by
Envirotemp								American Water
(40 gal.)								Heater
SGSV - Pacific Seismic	2	4	4.75	3.875	2	N/A	N/A	
Products (Model								
300)								
SGSV - Little	2	ω	1.5	ω	Ч	N/A	N/A	Stated EQ trigger:
Firefighter								M5.4
(Model AGV-75)								